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i       . ABSTRACT 

|: The restoration of incoherent optical objects which have been 

diffracted by an optical system and corrupted by detector and additive 

background noise is considered.   The approach to the problem is 

basically numerical and considers operating directly on the noisy image 

and point spread function rather than the Fourier transform of these 

P quantities.   The effects of noise and the   se of a priori information 

W in the restoration process are given particular attention. 
I 

Several "optimum" estimates of the object intensity distribution 

are considered.   Based on statistics which have been verified hi practice. 
IF- 
| *he Baye's, maximum a posteriori, maximum likelihood and mean square 
W- 

error estimates of the object intensity distribution are obtained.   These 

H statistical estimates are compered mathematically and in many cases 

I      , numerically to other non-statifiscal estimates formulated from control 

theory and dynamic programming.   Extensive numerical results have 

| been obtained for the restoration of various one-dimensional objects xn 

I the presence of noise.   Two monochromatic "point sources" in the 
Is:.--" 

presence of noise are shown to be resolved when separated by 1 /5 o£ th^ 
% 

Rayleigh criterion distance«   Numerical results are also shown for the 
I 

mean square error as a function of a priori information, the measuring 
n 

scheme chosen and diffraction« 
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INTRODUCTION 

Statement of the Problem 

All objeete which are inputs to a physically realisable optical 

imaging system emerge from the system as imperfect representation« 

of the original object.   This object corxuptios may be due to several 

effects inherent in the optical system, such as diffraction and aberration, 

as well as background and detector noise.   7n fact, the effects of 

diffraction alone can severely limit system resolution and effectively 

destroy, insofar as the observer is concerned, the original object detail. 

These effects are so pronounced that in the past, as Toraldo di Francia 

(1952) points out, the classical Rayleigh resolution limit has been 

accepted as a theoretical limit.   However, in 1955 Toraldo suggested that 

a priori formation about the object could be used to alleviate the 

apparent theoretical limits imposed by diffraction. 

in 1964 J.L, Harris showed, by using some well-known results, 

that in the absence of noise a priori knowledge that the object is of unite 

extent is sufficient to enable the exact restoration of a diffracted optical 

object.   This work theoretically establishes that object restoration is 

limited only by system noise. 
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With this b»ckgrouiid we stete that the problem treated in this paper 

is that of restoring an optical object which has been diffracted and 

corrupted by background and detector noise«   Particular emphasis is 

pUced on the traoe-off between restoration detail and the limiting noises. 

Approaches to ihe Problem 

Although a unique theoretical solution has been shown to exist, the 

application of a working restoration procedure which performs well for 

a variaty of objects and optical configurations is quite another matter. 

Basically, three approaches have been considered iz* solving this 

problem« 

One approach has been to utUise the Fourier transform relationships 

that exist between the object and image.   Harris (1966), Osterberg (1966) 

and Y/olter (1961) have considered this approach«   However, this 

technique appears to be difficult to analyse when applied to the noisy 

observed quantities, and as yet no results appear to be available which 

use Fourier techniques in such an environment. 

A second approach, used by Barnes (1966a), is one of analytically 

solving for the object by using the eigenfunctions of an integral operator 

involving an analytical point spread function«   The drawbacks of this 

approach, from a practical point of view, are:   {I) the extreme difficulty, 

at present, in   staining eigenfunctions for a general point spread function 



(one that it measured), and (2) the fact that, to date, •yetem noise has 

not been included in the analytical restoration process. 

The third approach which is developed in this paper is that of using 

numeric   . methods to perform the restoration«   We reiterate the 

practical advantages of this procedure over those above.   First, in an 

actual real-world situation only discrete quantities are available to 

operate on and effect a solution; i. e., the point spread function and 

image are usually not analytically known and so must be discretely 

measured and thei operated on to perform the restoration.   Secot \ 

the observed quantities are not deterministic but must be trea id as 

random variables«   This randomness may be due to additive background 

fluctuations, film granularity, photomultiplier multiplicative c^ise or 

some other detector noise«   These effects can be taken into accou&t by 

using numerical technique« and appealing to the statistically optimum 

minimum mean square error (MSE) estimation procedure. 

Plan of fee Paper 

The first section presents a review ci the development of the 

image-object relationships and presents fee integral equation feat is to 

be solved to effect fee restoration«   Emphasis is placed on reviewing 

fee assumptions involved in developing fee imaging equation and in 

discussing fee concept of diffraction and how it is to be varied in this 



paper*   Emph&tl« is alto placed on the transfer of the continuou« version 

of the imaging equation to its discrete representation so that numerical 

methods can be used in its solution. 

As a preview to the numerical work that will follow later, the second 

section after the introduction reviews previous numerical work in the 

solution of the basic integral equation developed in the first sec .ion. 

Also presented in this section is a dynamic programming solution, 

developed by the author, which utUises an "area" constraint in the 

solution. 

The third section treats two analytical approaches which assess the 

difficulty in regaining object information which has been obscured due to 

diffraction and noise.   Particular emphasis is placed on the trade-off 

between SNR and diffraction in obtaining this information. 

The fourth section discusses the noise models to be used and 

presents the development of the minimum MSB object estimate.   This 

estimate and the cor-iputational features discussed in the last two sections 

constitute the basic restoration procedure as presented in this paper. 

Results of performing actual simulated restorations and of the study 

of errors involved in using the MSE estimate are presented in the last 

two sections.   K'ere again, as in the section on analytical results, 

particular emphasis has been placed on the ejects of noise and diffraction 

in restoring object detail,   Jn addition, emphasis has been placed on 



presenting actual simulations for various noite levels to that one may 

visually judge the restoration improvement«   These simulations augment 

the important hut somewhat abstract results obtained in the analytical 

section and serve to give one a more complete picture of the restoration 

procedure. 



THE IMAGING EQUATION 

In tfait •eetion we derive and diceuet the reUtioathip between the 

radiation from aa incoherent source intensity distribution and the corres- 

ponding image intensity distribution.   Near the end of the section the 

imaging equation in both continuous and discrete form is stated.   In 

order to clarify «hat is meant by diffraction as it applies to the restoration 

problem« the concept of difffaction and its relationship to the imaging 

equation will be discussed.   With this background the reader should 

be able to more clearly assess what is meant by object restoration in 

the presence of diffraction. 

The Optical Configuration 

The ogo&cal coniiguration to be used in the derivation is shown in 

Figure 1.   However, it should be mentioned that the imaging equation 

developed here with the subsidiary definitions necessary to utilise this 

equation can be derived from several optical configurations.   Two such 

derivations are mentioned below. 

Kelstrom (1964) derives this equation with suitable geometric 

assumptions which make it possible for a lens or absorber to replace 

the aperture.   His approach is quite natural if one wants to develop the 

-■-■--^'■—■■■■:■■::—"-.■:.-:_:....-.::... 
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practical aspect of an Inttrumeat which observes objects at great 

distances from the aperture« 

Cutrona and others (I960) use a configuration composed of appropri- 

ately spaced lenses which is often used in the laboratory.   Using this 

system, the only assumptions necessary to derive the imaging equation 

are that the lenses together serve to image the object plane onto the 

image plane and that the lenses are aberration free. 

The Scalar Theory 

To begin with, the disturbance in the object plane is taken as an 

electromagnetic field at optical frequencies.   The complete derivation 

of the imaging equations by finding appropriate solutions of Maxwell's 

equations has been accomplished only in a few idealised situations 

(Stone, 1963)*   However, an approximate theory has been developed 

which allows one to solve the imaging relations for a variety of aperture 

shapes.   The approximate theory treats the electromagnetic disturbance 

as a scalar field and neglects effects due to polarisation.   Fortunately, 

the imaging equations developed from this theory predict the associated 

distributions to high accuracy when certain restrictive although not 

impractical assumptions are made. 

The wave equation, which the amplitude of the wave in the scalar 

theory must obey, is 

■   - :-     -^ -■-■ 



2        1    JTu y^u+^fl^.O (I) 
c    5 t 

where u la the scalar amplitude of the wave and c ie the free apace 

velocity of light«   The monochromatic (wavelength \) solution of thia 

equation in spherical coordinatea may be written 

u(R, t) m i- eoa [k(R-ct) + 0] (2) 

i^iere a ia the conatant fixing the amplitude, R ia the apherical radial 

variable, k * 2v/x( and 9 ia a phase angle«   This solution represents 

the wave propagated from a point in the object plane« 

It is desired to consider many such points located at (or, ß) in the 

object plane, and so we write for the object amplitude distribution 

u(R,a.ß,t) » c Rt [AKß.^e""1] (3) 

where A(a,ß(t) is the complex amplitude, R t means "real part of, " 

and c is a constant which take« the inverse distance relationship ir to 

account. 



f 

I     . 10 
st 

I Here we make the aetumption at diicuased by Helftrom (1964) that 

the obeervatioa time it to be imaU compared with the reciprocal band- 

width of «be radiation and that no information regarding the instantaneous 

time dependence will be used«   Dropping the time dependence and for our 

purposes the unimportant constant c, we have 

I 
i 

u(Ria^).A(a.P)eikR. (4) 

Use of Huygen's Principle and the Geometric Assumptions 

The Fnvrier transform relations which will be developed are 

essentially those established by Huygen, Fresnel, and Kirchoff.   For 

a more detailed treatment, the reader is referred to Stone (1963), O'Neill 

(1963), Born and VfcM (1959), and Beran and Parrent (1964). 

Consider ; wave due to a point source in the object plane which 

propagates toward the aperture.   la essence, Huygen's principle states 

that once this wave has propagated to points which are just through the 

aperture opening, then these points themselves may be regarded as 

sources of secondary wavelets that again propagate with the usual solution 

(2) for a point source.   The disturbances due to all of these "secondary" 

sources which reach the image plane then may be appropriately summed 

to obtain the image plane distribution.   Finally, to obtain the image 

distribution due to several point sources or a continuum of point sources 
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in the object plane we merely tnm or integrate over the object plane 

coordinates« 

Following the above procedure we eeek to find the amplitude at an 

arbitrary point (y,e>) Just to the right of the aperture opening.   At a point 

to the left of the aperture 

ikS. 
u(R1,a,(J)-A(off?)elKRl, (5) 

Dealing only with the exponential. 

ikRj       ikR10   l^Rj-R^) 
e a e (6) 

Referring to Figure 1 the length R from Oj to O can be written in two 

«ayes 

R «Rj2- ft-«)2 - M»)2 «Rl0
2 -«2-P2. (7) 

also 

2 .    2 
Rl    " R10   " (Rl"RlO,CRl + R10) "Y   +«r -2(07 +#). (8) 

Thus 
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We now disregard the squared term la the exponential on the ground« that 

the Fraunhofer far-lleld conditiom hold and that the open portion of the 

aperture plane is small«   However, we still make the assumption that 

the dimensions of the aperture are txmay wavelengths, an assumption 

which is made in order that the scalar wave theory will agree with 

experimental results (Stone, 1963)«   We also assume that the source Is 

»ufttciently far removed from the apertnre so that R. + R.Q ■ 2R in the 

denominator.   Thus, the electric field just to the left of the aperture is 

A(a,?)e'    lüe R      . (10) 

In order to simplify the above expression (10) the following spatial 

frequency components are defined: 

U I ^'TT' <a* 

and 

«r      xR 



Expreuioa (10) become« 

IS 

A(a4ß)e      l0e Y       ^# (12) 

V/e now define a tttnafer function QCf . i ) and obtain 

v 
or fß(Vftr)w<HV VA^a ̂ 10 -«»v+v» (13) 

tor the rlectric field at a point (yf r) or (C* f ) juet to the right of the 

aperture«   The magnitude    G(f , f )   cannot be greater than unit/, for 

the aperture cannot amplify the incoming field (Helstrom, 1964).   We 

also define the transfer function ao that it ie sero for points outside the 

open portion of the aperture plane« 

At this point we apply Huygen's principle and treat each point on 

the right side of the aperture as a "secondary" source.   Following the 

same reasoning used in arriving at the disturbance at the left of the 

aperture plane due to a point source in the object plane, the electric 

field in the image is 

^<We lkR20   iZirtfyS + V,) (14) 

where again we have assumed the Fraunhofer conditions. * 
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To obtain the total electric fielä due to a point source in the object 

plane we muet integrate over all of the "eecoodary" point sources in the 

aperture plane«   Thus, the electric field in the image plane due to a point 

source in the object plane is 

y«.P 

^ZO  £> i2ir(f e+f «) 
«.'.)•«        jJ^pCVV VV        (l5) 

"00 

Substituting for v^ ß (1^* Ijj) 

ik(Rl0 + R20) 
Y^pC^.e (16) 

ft 12ir[f (^)^f (n-P)] 
.jfjrA(a.P)G«yf£<r)e        y df^. 

Thus far we have dealt entirely with the amplitude »* the electro- 

magnetic field«   However, throughout the derivation that follows it will 

be assumed that we are dealing with incoherent light and that the measured 

quantities are intensities, which add linearly«   Coherent light could also 

be assumed throughout and the form of the imaging equation would be the 

same as that derived for the incoherent case«   In this respect the numerical 

techniques used could be applied to either coherent or incoherent 

illumination, but the simulated results in the last section, apply only to 

the incoherent case. 
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The intensity (want) at (t,r\) due to a point source at (a(p) is 

b(«,ß,t,ti)»ya ^(6,ii)y a^{e.ti)» |ya#ß(S,i)l (H) 

where the star as used here denotes complex conjugate*   Performing 

this multiplication 

2 .    . 
b(«,iu»ti)« /jfjTjf |A(«,P) I G^nGty.n 

.iZirta^-fy^+^Cf .f'jj 
• e 

+i2ir(|(«vr-«r) + n<f -f )] , , 
• e *        dfydfydf df . (18) 

To obtain the total Intensity due to a contbmum of point sources 

in the object plane we integrate over the object plane.   Ibus 

Ml^) * fjH*.P,i.r\) dc»4P, (19) 

and using (18) 

rrrr * •  •   ^[e^-^ + ^f -f)] 
bd. n) -jjl/G^» V G «W e 

4 (20) 
I I 

fti  -     12  -^[«(^.^^-^(^-y] 1       i       i 
|d£yd£ydf df • 

-bo 

^-J - i-^jU--.; r^l i^^-crx^^fc 
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The integral in brackets is defined as the spatial frequency spectrum of 

the object intensity distribution»   The quantity lAfct,?)!   is defined as 

the object intensity distribution and will be denoted x{ct4 ?).   The integral 

in brackets is also the two-dimensionalIburier transform of xCc,?),   v/e 

denote it as iC^-fy, f «I )•   In general, capital letters will denote the 

' patial frequency transform of the analogous function in lower case letters. 
t t 

To facilitate further simplification let ty s fy-fy and t   a £ -f • 
t i t t 

Thus £y * fy-ty, dfy a -dty, and f   B f -t , df   a -dt f and 

« I2tr[|ty+iitj 

f/G^.yG^fy-ty,  f<r.t(r)dfydfo 

(21) 

•"^S 

dtydt 

The integral in brackets above is defined as tbe Fourier transform 

of the point spread function«   It is to be denoted as H(tyt t L   It will be 

assumed throughout for the configuration considered that this same point 

spread function applies for au'l point sources in the object plane«   This is 

the spatial invarianse assumption one uses in an "idealised" optical 

configuration (O'Neill, 1V63)«   With this definition 

bfc.Tl)-     jJxity.tjHity.tJ* dtydt.    (22) 

n 
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Taking the Fourier tran»£orm of both tide ot the above equation, 

Btty,^) - Wfy.f^) Xtfy.y. (23) 

By the convolution theorem 

b(|.T,) » /TM!-«. nW») «(a.P) dor*. (24) 

The one-dimensional version of (24) is 

MS) « Jhd^r) «(o-)*!. (25) 

Since it is assumed that the object is of finite spatial extent, Equations 

(24) and (25) may be rewritten as 

b(e,ti).   /]rh(e-a.iHJ)*(*,?)d»dP. (26) 
Rz 

a 
Ml) « fW-*) x(a)dB. (27) 

where R_ denotes the region in two-dimensional object space where 

x(a»ß) i« nonzero. 
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It i» our objective to solve the integral Equations (26) and (27} 

for the object when the image and point spread function are specified» 

These equations represent the diffraction of an object by an optical 

system and are known as the one and two dimensional versions of the 

imaging equation«   Of course, it is obvious to this point that no noise 

is represented in Equations (26) and (27).   Noise effects are treated in 

a later section«, 

The Concept of Diffraction 

lvhen the point spread function is much larger in spatial extent 

than the object, then the image Is nearly equal to the point spread 

function.   This Is a case of large diffraction, and the image bear& little 

resemblance to the original object«   Alternatively, when the point spread 

function is small spatially in comparison with the object the image is 

nearly e.^aal to the object and the diffraction effects are almosf negligible. 

In order to provide a measure of diffraction we define 

_ A   Point spread extent f28. 
"        Object extent {    ' 

where by point spread extent we refer to the "Airy disk" of the point 

spread function and by object extent we refer to a measure of the outside 

size of the object (where the object is nonzero); i.e., the size of a two- 

point scurce object is taken as the separation between the points. 
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The ratio R may be varied in two way«.   We can either fix the 

aperture and vary the object or fix the object and vary the aperture* 

Both methode of varying R produce the same qualitative result«.   In 

thi« paper we have considered, so far as the simulated results are 

concerned, a fixed optical system which views v irious objects.   This is 

generally the case treated in practice since the cause of a "diffraction 

limited system" is usually due to the fact that either the aperture was 

fixed when the measurements were made or, on realising that diffraction 

was severe, the aperture was opened as far as possible but diffraction 

was still apparent. 

Since we are presenting results for a fixed optical system that views 

various objects, it was convenient to fix the aperture in reference with 

the classical Rayleigh criterion for resolving two point sources.   The 

Rayleigh criterion resolution distance was set at unity, and thus 

2'0 P») object sise 

and R B 2.0 corresponds to the spacing of two point sources which 

Rayleigh proposed were resolved.   However, as we shall demonstrate, 

two sources can be resolved even in the presence of noise when R ■ 10.0. 

Now that the concept of diffraction has been reviewed and put in 

context with regard to the restoration problem, we consider next the 
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pretontation of *He numerical technique to be used *n solving the imaging 

equation. 

The Numerical Technique 1 ■ 

We desire to solve the imaging equation by a numerical technique. 

Thus, we are led to consider approximate discrete representations of the 

various functions involved.   The one-dimensional version (27) for a «ingle 

point £, may be written as 

b  « 2   (h w)x.+€ (30) 
1      isl      XJ   J      J 

where b. * b(£.), h.. « h(g.t a.), x. a x(or.), w. is the quadrature weight, 

and * * i* the quadrature error involved in transferring from continuous 

to discrete quantities« 

Hie quadrature error c. is very important in the restoration process, 

particularly if it is assumed that the object, point spread function and 

image are all continuous functions.   The quadrature error can be 

regarded as depending primarily upon the number of points (M) chosen 

and the type of quadrature weight (w.) used.   Evidence indicating the 

proper choice of these quantities for the one-dimensional case is 

presented in & later section.   Thus, at present, we neglect the 

quadrature error and defer this discussion to a later section. 
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Generalising (30) to N image point« |.( 42» • • • lNi we have 

N equations of the form (30) which may be written in matrix form a« 

b«Ax (31) 

where the elements a., in the A matrix are defined aa 

a., m h..w.       i « 1( ...N 

and b and x are, respectively, Nxl and Mxi dimensional column vectors. 

The two-dimensional version (26) may also be represented in the form 

of (31) by a suitable definition of the points in two dimensional space* 

This definition is illustrated in the Appendix. 

Equation (31) is the discrete numerical representation of Equations 

(26) and (27) used throughout the paper.   Observation of (31) in light of 

the objective (that of solving for x given A and b), the obvious solution 

for the case when M a N and A is nonsingular is 

x a A^b (32) 

where A~   is the inverse matrix for A. 
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However, such a «imple solution is essentially of no value when 

applied to the practical optical problem.   The two outstanding difficulties 

experienced by the author and ethers (Phillips, 1962: Bellman, 1965) 

are stated below*   First, in arriving at (32) it is assumec that no noise 

is present in the system*   The use of this assumption is very important 

since excessive accuracy may have to be used in order to obtain the 

correct solution«   Se. ind, as the diffraction becomes appreciable, the 

A matrix approaches a singular matrix, and from a computational point 

of view the successful inversion of the A matrix is nearly impossible. 

Both of these difficulties can be alleviated by taking the noisv, and the 

a priori information in?    account*   This £act is demonstrated in the 

simulated restorations presented in a later section. 

Phillips (1962) has also developed a technique based on control 

theory which overcomes the problems mentioned above.   Because of the 

similarity of his solution, as developed further by Twomey (196?), and 

the minimum mean square error (MSE) solution, in the next section a 

review of their approach to the problem is presented.   Bellman (1965) 

has further extended the computational procedure developed by both 

Phillips and Twomey and has applied dynamic programming to the solution 

of the problem«   Hence, we shall also consider the dynamic programming 

approach and attempt to evaluate its merits and limitations as it applies 

to the restoration problem. 
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Review of tfag Control Theogy Appyotch 

Because the final form of the solution« developed by Phillips (1962) 

and Twomey (1963) is very similar mathematically «nd conreptually to 

the MSE solution derived later, a rather extensive review of these papers 

is presented in this section« 

Recall the one-dimensional version of the imaging equation (27). 

Phillips (1962) mentions that this integral equation of the f^rst kind can 

be unstable in that infinitesimal changes in b(£) can cause large changes 

in x(er) and that the success in solving this equation by any method depends 

largely on the accuracy of b(£) and the shape of the kernel h(|-u')« 

Since the solution will depend on the accuracy of b(£)v Phillips 

suggests that (27) be altered to read 

a 
b(|) + e(|)-  rhfc-aM«)*» (33) + «(1) « A 

where e(|) is an unknown arbitrary bounded function«   The solution to 

tbi» equation is not unique, but now we seek to find the best solution 

from a family of solutions.   The "best solution" is referred to in the 

■i 

NUMERICAL SOLUTIONS AND METHODS 
m 

IN THE ABSENCE OF NOISE | 

.5 
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sense that further constraints »re placed on the solution which enable 

one to solve the problem« 

Phillips introduced a smoothness constraint, which is that the 

quantity 

J[x"(i)]2de (34) 

•09 

be small, where x''^) denotes the second derivative of x(£).   Numerically 

(34) may be approximated by 

Sfe., -*, + «„/. (35) 
isl 

Phillips then considers the function e(&) to be bounded in the following 

way: 

/e2(|)de<E o   (36) 

or equivalently 

M'    2 <«« S e     < E. (37) 
i«l 



Now we can prop,   e the following minimisation: 
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subject to 

"^f.^i.l-^i^i+l^ (JCj)   iml 
(38) 

NM 
Lffi a..x. -b.)   - E ■ 0, 
ial jci ^ ^ 

(39) 

Follovnng the general minimisation procedure using .«grange multipliers 

the problem posed in (38) and (39) is equivalent to seeking the ( xj 

which minimise 

M 2 
R(X) a    S   (Xi.l"2xi + Xi+l)    +^ 

ial 

-1 N  M 
S (25 a.-x.-b.)   - E (40) 

where x'   i8 ^e Lagrangian multiplier (Courant and Hubert,  1953; 

Hildebrand, 1952). 

J£ we continued on with the Lagrangian method we would find partial 

derivatives of R(x) with respect to the x. and s" .   From these equations 

one then solves for the x. and >f ,   In this case, however, we cannot 

solve explicitly for x"   unless the bound E is specified.   Thus, to make 

the problem more mathematicaUy tractable we consider the quantity 

x'   to be known and E to be unknown.   This is often done in practice. 
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and one can reason that the parameter ^    is to be varied until some 

specified bound is attained (Bellman, 1962)* 

When x'   i*   nown we can equivalently choose x. to minimise 

N   M , M , 
R(x) - £ (Ea..x-b r +   X   S (x.  1-2x  + x     f, (41) 

ial j«!^ J     * ial    *"*        *        i+1 

Now the second term can be regarded as the constraint, while we seek 

to minimise the squared error. 

Note that if A is allowed to be negative the ' R(x) can be made zero 

regardless of {x.}.   Thus only non-negative values of ^ are to be 

considered« 

To find (x.} we differentiate R(x) with respect to x. and equate 

the result to zero.   Thus, 

^ • = aik ^ Vi-bi) (42) 
^ ial    ""jal   ^ *     1 

+ (xk-2- ^-l + 6V4xk+l
+Xk+2, a 0 

where x   "»x.... » 0, k « 3#4f .•#M-2«   Xn matrix form this equation o       M+i 

can be written 

A»Ax-A'b + xHx s 0 (43) 

I 
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where H 

5 
~4 

1 
0 

-4100 
6-410 

-4 6-4 1 
1-4    6-4 

0    .     . 
0    .     . 
0 .     . 
1 .     . 

The prime is used to indicate a matrix nr vector transpose.   Thus, 

the minimizing vector x is 

x « (A»A + ^H)"1 A'b. (44) 

This is the result obtained by Twomey (1963) and is a slightly modified 

form of the original expression developed by Phillips (1962). 

From (44) we see that if > is zero the solution reverts back to the 

over determined pseudoinverse solution (M<N) or the inverse solution 

(MsN).   Values of }J>0 weight the constraint more heavily and arc chosen 

in accordance with the amount of "smoothing" necessary to control tha 

unstability of the eystem« 

Once the solution vector x is found the individual "errors" (e ) may 

be determined from 

e = Ax - b. (45) 

These values may be used as a criterion t   choose x (Phillips,  1962). 

For x » 0, t\ä e. are zero. 
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The choice of a suitable value for x *^Y '«ad one to be rather 

■keptical about the use of such a parameter.   Experience has shown, 

however, that in applying this technique to the optics problem the 

ill-conditioning of the original system can lead to solutions which conflict 

with the a priori knowledge that the incoherent object intensity distribution 

cannot be negative or exhibit large positive or large positive and negative 

oscillations.   Based on this rather limited prior information, a practical 

choice of x can be made« 

In practice we can, by obtainfig a solution for several values of A, 

determine a minimum value \   .   so that the solutions do not conflict Amin 

radically with this a priori knowledge.   For a range of values above this 

minimum, the solutions do not change appreciably, and thus are all 

"acceptable solutions. '*  With this knowledge and the ase of further 

computational schemes we can from a practical point of view circumvent 

the arbitrariness in the choice of x- 

Other Constraints 

Twomey (1963) and Bellman, et al. (1964, 1965) utilize other 

constraints which are applicable to their particular problems.   Twomey 

(1963) suggested a constraint which minimizes the sum of squares of 

the differences between the actual solution vector x and an a priori vector 

p.   In this case we seek to minimize 
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N   M 2       M 2 
RX^sZCSa x-b)   +xS(x.-pir. (46) 

The vector solution (obtained in the same straightforward way as before) 

is 

^»(A'A + xir1 (Atb + ^p) (47) 

where I is an MxM identity matrix»   Twomey states that a general form 

of the solution when many different constraint« are considered is 

x a (A'A +XH)"1 (A«b + Tvp). (48) 

where H is a matrix and p is a vector, and they are to be specified 

by the constraint used« 

Here we call attention to the fact that (47) and (48) are very similar 

mathematically to the MSE solutions (149) and (155) which are derived 

later.   Conceptually, the methods used in deriving these equations are 

also very similar in that the basic motivation in each case was to utilize 

a priori information in producing a better solution.   Further analogies 

between the MSE and control theory approach are deferred to the Object 

Estimation Section. 
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SeqvientUl Approximations 

The method of sequential approximations or iteration shown here was 

first mentioned by Bellman, et al., (196 5),   It was found to be very 

useful in the restoration problem and was used extensively in obtaining 

the simulated restorations presented later«   This method was applied to 

both the MSE solution (l£r>) and the control theory solution (47).   The 

method consists simply of continuously replacing the a priori mean or 

vector by an updated version as shown below; 

x   - (A«A + TJ)"1 A«b + (A»A + ^l)"1 x    .. (49) 

This is a sequence in which x   approaches the vector 

x = A'lh (50) 

for A nonsingular«   The convergence of this sequence is seen as follows. 

For convenience we define the matrix 

Be(A»A+>vir
1 (51) 

;■ 

i 



31 

and the vector 

d = A«b, (52) 

Now for i>0 and A n' asingular the eigenvalues of xB are all less than 

unity (Bellman, et al.,  1965)*   To show that the sequence (49) converges, 

we note that it is a Cauchy sequence 

Xn " Xr.-1 ' '>B(Vl " "n-Z1 

xn " Vls h&flBA + V1 + >vB,J* 

whence, as n approaches infinity, x   - x    , approaches zero and x   and 

x _. approach x.   Thus 

x = (A«A + ^I)"1 A«b + x(A«A + xl)"^ (54) 

and 

x s A"1^ (55) 
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Again we stress that unless we can successfully invert A (from a 

computational point of view) and possess essentially deterministic know- 

ledge of the vector b, then the vector x will not correspond to the object 

vector x.   Procedures have been designed into the solutions which alleviate 

the lack of this knowledge*   However, this does not minimize the importance 

of the iteration technique, since its use allows one to effectively vary the 

a priori information in a much easier way than by inverting a matrix for 

each new value of x« 

Dynamic Programming Solutions 

Review of dynamic programming 

To present some continuity with regard to dynamic programming 

procedures, the following brief review is presented.   The reader is 

referred to Bellman (1957, I960, 1962) for further details.   A classically 

simple yet exhaustive example involving the principles of dynamic 

programming would serve this purpose, bat such an example is hard to 

find for the procedure described. 

Dynamic programming is a term used to describe the mathematical 

theory of performing a sequence of decisions, or more formally, the 

theory of multistage decision processor     In this paper it is used as a 

mathematical tool to sequentially compute the vector components of the 

object vector x. 
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The . "ajor advantage of dynamic programming over the solutions 

just considered is that no matrix inverses are needed.   Thus, this 

procedure can alleviate matrix inversion errors for large or nearly 

singular matrices.   However, the procedure also has limitations for the 

problem being considered*   One such limitation is due to the use of time 

as an artificial index of available information, a facet to be discussed lat*»y 

in this section. 

Dynamic programming solutions inherently depend upon the optimality 

principle, which is:   An optimal policy has the property that whatever the 

initial state and initial decision are the remaining decisions must 

constitute an optimal policy with regard to the state resulting from the 

first decision.   The general proof of this principle is proved by a 

combination of induction and contradiction«   A specific proof is found in 

Bellman (1962). 

For a more detailed review we consid *• .*.« uiocrete deterministic 

process; deterministic in the sense that the result of a decision is uniquely 

determined by the decision and discrete in the sense that the process 

consists of a finite number of stages. 

Bellman (1957) defines a state vector p s (p1( •.., pm) which is a 

member of a set D and a sequence of transformations T a   (TJ .   The 

transformations have the property that p e D implies Tq(p) « D also. 

That is, the transformations have the property of transforming the state 

vector at any stage of the process into its original set. 
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A policy is any choice of the set of variables which yields an 

allowable sequence of decisions«   An optimal policy is the choice of q 

qi»*• •« qN* which in our case minimises a preassigned function of the 

final state p^.   Corresponding to each q. we have T   , and thus we may 

equivalently regard a policy as a selection of transformations.   The 

preassigned function B.(pN) of the final state is denoted as the criterion 

function« 

Now we define 

fN(p) « min R (pN) (56) 

where ^N(p) is the N stage return obtained starting from an initial state 

p and using an optimal policy. 

We can use the optimality principle to obtain a recurrence relation- 

ship for the functions of the set f^Cp)  •   Suppose a transformation T 

is chosen as a result of the first decision«   The new state vector is T (p). 
q 

The minimum value of the criterion function as a result of the next N-l 

stages is fN i(T (p)) from (56) above«   Using the optimality principle, if 

it is desired to minimize the total N-stage criterion function, q must be 

chosen so that 

fN(p) « min fN->1 <T (p)) (57) 
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for N > 2, with 

fj^sminTqCp). (58) 

Equations (57) and (58) ara the crucial relationships used in discrete 

deterministic dynamic programming.   Once these relationships are 

established for the particular problem at hand, the solution is well on its 

way to completion. 

Stochastic dynamic programming 

A similar formulation is available for a discrete stochastic process 

in which the basic difference is that a decision results in a distribution 

of transformations.   Several additive noise forms were considered under 

this formulation, but for the forms considered only first moments of the 

additive noise entered directly into the solution, while second moments 

and first moments entered into the final error function.   Since we can 

assume without loss of generality that the noise mean is zero, these 

solutions, except for the error term, were the same as the deterministic 

solutions. 

Deterministic solution wife area constraint 

Bellman, et al. (1964, 1965) has obtained dynamic programming 

solutions for two constraints, one which involves the use of an a priori 
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vector p as in (47) and another v/h'.ch utilizes a smoothness constraint. 

Here we obtain a solution which uses an area constraint and is suited to 

the a priori information available in the problem. 

We first show that the area under the object is attainable from the 

image and point spread function.   The area under the object distribution 1 
i 

is the product of the areas under the image and point spread functions. 

This is easily demonstrable.   Consider the one-dimensional version of tl>e 

imaging Equation (25) which is i 

b(£) a h(|)*x(g) (59) 

where the star as used here denotes convolution«   The analogous 

expver iion in the spatial frequency domain is 

B(f) * H(f)X(f) (60) 

where 

'=;£- 

Expression (60) holds for all fv thus when £ « 0, we have 

00 00 00 

Jbnw = Jxiiw Jh(e)de (6i) 

= 

00 
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which is the desired product of areas«   The numerical approximation for 

these integrals yields 

M N N 
c = Z x.w. s  Z b.s./ 2 h.v. (62) 

1.1   i  1     i«!   l 1 i«l   l l 

where w,, s  and v are quadrature weights. 

Since c is attainable from (62) we can use (62) as the constraint and 

minimize 

M 2     N   M 2 
RM(xi a x( S w^-c)   + S (S a^-bj)'. (63) 

isl ial j«l 

Before proceeding with the dynamic programming solution» we shall 

consider the vector solution.   Differentiating RM(x) with respect to x. 

and equating the result to zero. 

ÖRM(x) M N        M 
« 7,(2 w^.-c) wu + S a4. (Sa..Ä.b4) = »;. (64) axk -iBl i i    '    k   ial ik^     ij j    i 

In matrix form 

X ww'x - Xcw + A'Ax - A'b « 0 (65) 
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where w« « (w #.   % _, w.^) is the vector of quadrature weights.   Solving 

for the vector x( 

x r (A«A + xww1)"1 (A'b + xcw). (66) 

If we defiae the unit vector e1 s (lt.. , 1), than the vector form of 

the area constraint solution is 

x a (A»A + ^ee«)'1 'A'b + xce) (67) 

where w. a lt i s l(,,af M. 

Evaluating ?-. .(x) by substitution of (67) into (63) we obtain the 
M 

follc-wing quadratic form for the error: 

e s b« {I + A[ A'A + >ee« j"1 A«} b 

+ 2b{ >vA[A'A + T^ee« J-1 e) c (68) 

+{ X + A2e«f A»A + ee» ]"1 e} c2. 

Thi« may be written in the form, 
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e-b^.b + Zb^c + r^/ (69) 

which is referred to in the dynamic programming solution. 

To begin the derivation of lie dynamic programming solution, we 

specify that l^M^I,   For M = 1 there results the simple problem of 

minimising 

2     N 2 
RJMSMXJWJ-C)   +S (a.jXj-b.) . (70) 

The minimizing value of x. is 

Xcw   +b»a 
xl «  i ÜA— (71) 

^wl  +a,(l)a(l) 

where a»(1) = {&lV a^....^) and in general a»(M) = (a1M. ....»^ 

and represents the M    column of the A matrix*   R (x) evaluated at the 

minimizing value of x   may be written in the form 

min R,(x) a b'Q.lH- 2b« p.c + r,c2 (72) 
x.      lw 1 rl 1 

where 

XW,   fa.(1)a(1) 



Pi88 
'^^Vci) 

AWj  +a«(l)a(1) 

and 

r, « 

2     2 

^Wl2 + a,(l)a(l) 

The recurrence relationship 

is stated for M> 2, with 
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£M^ C) B ^'M-I^-WM' C^MXM>J (73) 

£1(b,c)srainR1(x). (74) 

This recurrence relation is derived in the Appendix using the optimality 

principle« 

Referring to the definitions previously discussed, the parameters b 

and c represent the state variables, the functions { f .(b, c)}  correspond 

to tt ^ criterion functions, and the optimal policy corresponds to the 

choice of x. or transformations (b>a.,.x,. c-w.x.) . 
i (i) i* i i 

The general form of the error for the vector solution (69) is similar 

to f. (b# c) shown in (74) and (72).   It is a simple natter to prove 
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inductively that the general form of fVI(b. c) is 

fM(btc)Rb.QMb + 2b.pMc + rMc2. (75) 

To solve for the general scalar value x,,. the recurrence relation 1    ■ M 

(73) is used with (75) 

2 i 
b'Q. .b + 2b»p--c + r. ,c   s min{ (b-a.. „x..) C. . (b-a.. ..x .) 

M M M x,, (M) M      M-l .     (M) M 
M 

+ 2(b " WM*' PM-I^^M'M» (76> 

+
 rM-l{C-WMrM)2) ' 

Expanding the expression on the right, 

b,QMb + 2b,PMC + rMc2 S ^{b,QM-lb + 2b,PM-lC + 'M-l0' 

2 2 
+ X MJrM-lWM + 2wMa,(M)PM-l + a,(M)QM.la(M)l (77> 

■ 2xMf CWMrM-l + Ca,(M}PM-l + WMb,pM-ll >• 

For convenience the first expression on the right in brackets is defined 

as G and the second expression in brackets is defined as D.   Differentiatin- 

the expression on the right with respect to x^ and equating the result 

v 
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to zero, 

XM- D ^ 2..   t——r;—i— ——• (78> 

rM-lWM + 2WM* (M)PM-1 +a (Mr.M-la(M) 

All of the quantities in this expression are known except Q. . ,, p,, ,. 
JA-1   

I
M-1 

and r     ,, but recurrence relations for these quantities ran be estnhlfnhed 

by evaluating f   {b, c).   Substituting (78) into (77), 

biQ-.b + 2b«pXirc t r. .c ' a b'Q,.. .b + 2b»p_ .c + r^^ .c M rM M M-l rM-l M-l 

-%. (79) 

2 
Expanding G   and equ8.ting quadratic coefficients the following recurrence 

relations are evident: 

0     0       ^MPM-I^IM^MPM-I^CM/' 
UM ~    M-l" 2 

M-l    M MM       M 

^MPM^I^CM^M-^M^M^ 
pM = PM.! r1- "7  (80) 

rM-lWM + 2wMpM + kM 

* M-l    M       M r,. * r. M       M-l 2^,      n     A, 
rM.lWM + 2WMPM + kM 
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where for computational purposes we have defined auxiliary quantities 

af(M) S QM-1 'W 

PM a p,M.l ^M)* 

and 

\l!B a,(M) QM-1 a(M)' 

Recalling ine expressions for Q , p , and r   in (72) we see that if 

Q   = I, p   s 0, and r   = Xt ^ien &* relations just developed (80) hold 

for 1<M<N. 

If the stability control parameter A = 0f ^en (78) reduces to 

■-■ ^fev,- 
Since the scalars r. s 0, i s 1,. # #, Mt and the vectors p. = 0, i s lt... f 

M, then for x = 0 the recurrence relations (80) reduce to 

Ou-Ou.-'-^ <«) 

for If M<Nt with Q   = I, 

The general relations (78) and (80) constitute the dynamic programmir^ 

solution for the restoration problem using the area constraint as 
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previously described.   These relations along with the relations developed 

by Bellman, et al. (1965) for the prior vector constraint were used in 

actually simulating the restoration process.   The results of these j 

simulations appear in a later section, j 
I 

The major advantage of dynamic programming over the matrix inverse 
I 

solutions is that no matrix inverses are needed.   As a further evaluation, 

an apparent limitation is discussed below. 

Pseudo-time and dynamic programming 

Time as used in dynamic programming is usually used as an index 
i 

to indicate thy availability of information.   In applying dynamic 

programming to the restoration problem, time in this sense is an 

artificial index since in most cases all of the information needed to effect 

a solution is available at the same time.   An elaboration of these state- 

ments follows, 
- r 

In business problems, as well as in many other problems because of 

the sequence of time, only limited information may be available to operate 

upon at a certain stage of the problem, and in these cases one can do no 

better than act on the available information.   For these cases the dynamic 

programming solution is optimum in the sense of using all of the available 

i 
information. However, the stepwise minimization as noted in (70) is 

accomplished as if only the first column of the A matrix is available, 

when actually the entire A matrix was available.   There is some cost for 
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this neglect.   If this cost does not compensate for the computational error 

involved in matrix inversion, then, neglecting other factors, one would 

not use the dynamic programming approach«   This tradeoff has not been 

investigated in its entirety, but the evidence from the results available 

indicates that the dynamic programming solutions are not as well suited 

vo the optics problem as the matrix inverse solutions. 

Combination of dynamic programming and matrix inversion 

As a continuation of the above discussion, one logically may ask if 

there is a procedure one can use to combine the properties of dynamic 

programming (which enable one to treat large dimensionality) and yet uye 

more A matrix information per object estimate.   The author has developed 

a generalization of the dynamic programming procedure which allows one 

to restore the object vector as groups of subvectors.   The solution for 

each subvector involves the inverse of an increasingly greater submatrix 

of the original A matrix and thus utilizes more available information than 

the scalar by scalar solution previously considered.   It appears that this 

generalization may be applied to all of the dynamic programming 

constraints used thus far. 

Because of the computer programming complexity involved and the 

fact that the matrix inverse procedures were computationally sound for 

the A matrix dimensionality considered, this generalization was not 

investigated further.   However, future efforts should not overlook this 
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generalisation, particularly in regard to the greater A matrix 

dimensionality inherent in two-dimensional object restoration. 
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ANALYTIC RESULTS WITH NOISE FOR SPECIFIC CASES 

In addition to the theoretical implications that this section conveys, 

this section is presented in order to emphasize the trade-off between 

diffraction and noise in regaining object information which has been 

corrupted by these effects*   Two rather separate looks at this trade-off 

have been investigated«   In each case different amounts of a priori 

information about the object are assumed« 

The first case involves the problem of discriminating between two 

different objects«   It is known a priori that there is a choice between one 

of two objects and further that the objects are specified a priori as a 

one-point source and as a two-point source object«   In the second case 

it is assumed that the object consists of two point sources, but because 

of diffraction effects the separation between the two point sources is not 

known.   For the second case the relationship between the error variance 

of an estimate of the separation and diffraction is shown.   It is important 

that the a priori information used in each case is emphasised so that 

we can better evaluate, qualitatively at least, the cost involved in 

regaining various amounts of information from the observed image« 

A second point to be mentioned is that the results presented in this 

section are largely theoretical, while those that follow treat the mors 
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practical aspects involved in the general restoration problem when there 

is virtually no a priori object information. 

Detection Error vs. Diffraction 

The problem of optical discrimination or detection has been considered 

by several authors (Helstrom,  1964; Harris, 1964b; Rushforth and Harris, 

1966; n, 1966),   In this treatment several assumptions are made 

which enable the analytical solution to the detection problem to be obtained. 

This is done to present a rather complete example of diffraction and 

noise effects in the detection problem. 

The noise model and detection scheme 

To begin the problem, we assume that the image intensity distribution 

is due to one of two known objects plus background noise.   We consider 

only the one-dimensional version of Figure 1 and that the objects are the 

point source ö{oe) located at the origin and the sum of two point sources 

lö(a-iK) + i6(a-ti2) located at TK and n- respectively.   The images due 

to these objects are denoted respectively p(|) and q(£).   To enable 

analytic results to be obtained, the point spread function is taken as 

hfc) . -4,   e^ ,2ff . (S3) 
\/2inr2 



Thus using (27) the images are 
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and 

2.    2 

./2it(r ' 

V2w2 

(84) 

(85) 

With this formulation the two states of nature are 

«V  b(e)«p(|) + n(|) (86) 

«2:  b(e) • q(|) + n(e) (27) 

where n(|) is the additive background noise.   The block diagram of state 

of nature w. is shown in Figure 2. 

It is further assumed that the noise vector n (the discrete version 

of n(|)) is white and Gaussian with mean n = 0 and covariance matrix 

2 
K   s (r    I«   The more practical Poisson noise model used with a detector 

is discussed in the Object Estimation section«   Since n is Gaussian, the 

conditional density functions of the image are also Gaussian and axe 

f(b/Wl).N(p.<rn
Zy) 

£(b/«2)«N(q,<rn
2I) W 
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x(or) 

n(e) 

«V- hit) 

Figure 2.    Block diagram of the optical configuration. 
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where Nfti, K ) indicates a joint Gaussian density with mean vector \L and 

covariance matrix K , and b, p and q are, respectively, the discrete 

versions of b(£)( p($) and q(t). 

Using the techniques of statistical decision theory (Middleton,  I960), 

we can at this point specify the Optimum discrimination procedure.   XC 

the two states of nature are equally likely a priori, and if the costs 

associated with the two types of error (i.e., choosing w. when u. is txxxn 

and vice versa) are equal, then it can be shown that the optimum decision 

scheme (in the sense of minimizing the average cost or, in this case, 

the error probability) is the following: 

choose M, if £(b) > 1 

choose w, if 1(b) < 1 

(90) 

where 

(bjaf^/w^/ffl»/«^ (91) 

is the likelihood ratio of the observed vector b.   Since the natural 

logarithm is a monotonicaUy increasing function of its argument, an 

equivalent statement is; 

r 
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choose o. if L(b) > 0 

(92) 
choose (it   if L(b) < C 

where 

L(b)aint(b). {93} 

Noting that fCb/u^) and f{b/«2) are Gaussian, substitution of {88) ar.d 

(89) into (93) results in the decision procedure: 

choose w. if (p-q)b > ijq'q-p1?) 

i 

choose u, otherwise, (94) 

Eqcation (94) is just the discrete form of the correlation detector or 

matched filter, matched in this case to the difference between the 

diffracted objects. 

Equation (94) specifies the data processing necessary to make an 

optimum decision*   However, we wish to investigate more thoroughly the 

consequences of using this procedure as diffraction and noise vary.   To 

accomplish this we evaluate the probability of error associated wi^h tie 

discrimination procedure just described. 
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Evaluation of the discrimination, procedure 

There are two types of error "which a discrimination procedure can 

lead to:  Choosing c*. when u. is the true state of nature (i, e., calling 

the two point source a one poin* source in our case), and choosing «_ «dien 

w, is true«   If decisvanprocedure (94) is used, the error probability for 

the equally likely objects is 

Pe « iP(G>P/w2) + iPCG^/wj) 

?? P 

«i  rf(G/«2)dG + i  T^G/w^dG (95) 

-00 

where G « fp-q)^ is the test statistic, p a ^(q'q-p^} is the threshold, 

and f(G/(a.) is the conditional density of G given that <*. is the true state 

of nature.   To evaluate the error probability we must find the conditional 

densities f{G/w2) and f(G/(i>. )c 

The Gaussian noise model allows these conditional densities to be 

found by noting that the scalar statistic G i« a linear combinatica of 

independent Gaussian random variables, and thus G itself is Gaussianly 

distributed«   To specify completely the densities f(G/w,), we need only 

find the conditional means E(G/w.) and the conditional variances 

var(G/ci}.)«   These conditional means and variances are, in this case, 

easSly found.   They ares 
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lij = EvG/wj) a (p-q) p 

li2 a £(G/fa>2) « (p «q) q 

2 , 2 • o-j   s var (G/Wj) a<r     (p-q) (p-q) 

2 2 • <r2   B var (G/w2) «<rn   (p-q) (p-q). (96) 

Using (96), together with the Gaussian probability deneity function, 

the probability of error is 

2        2 2        2 
»  -(«-l*2) /2«r2 p   -(u-^j) /Zffj 

P   alf^s.    dtt + jT6     ;   du. (97) 

Further algebraic manipulation yields the simpler form 

-    .tt2/2 
P   » / ^^rr  du m 

d/2  J 
e 

where 

|4{-T (pVlp-q)} • <"> 
0" n 
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Equations (98) and (99) are the important relations.   In the work 

that follows several quantities are defined which will enable us to extract 

a good deal of information from these relations about the probability of 

error as the diffraction and noise vary« 

In order to simplify (99) recall that (04) and (85) are the continuous 

versions of p and q«   Using a suitable definition as to the transformation 

of continuous quantities to discrete and vice versa, it can be shown that« 

when p and q are transformed back to their continuous versions (99) 

becomes 

i 
(100) 

At this point note that the quantity in braces may be defined as the 

"energy-to-noise" ratio 

ENR^d2»-!-  r[pfc)-q(|)]2dg 
J 

n  -« 

(101) 

where the term "energy" refers to the integral square of the difference 

image,   (The usual definition of this quantity as it applies to electronic 

signals is the signal-to-noise ratio (SMB.).   However, in this paper we 

reserve SNR for the more literal cap'   "'   re signal refers to the true 

observable image intensity or counts and noise refers to the sample mean 

absolute variation of the noise intensity or counts.) 
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The analytic«! formulation of tfce detection problem is found by 

Bubatituting the images (84) and (85) into (100).   Thus d/2 becomes 

d    f     1 1 /7TC2 3 + e     ^2      -4 
Z.A 2 2,,  2 

•n^j  /4ir        ~r\z /4ff 
+ e 

(102) 

Note that d/2 depends upon both r\. and TJ   and not merely on their 

separation (which we denote y ■ n^^O* &s rii8*li I,ave been Predicted. 

Thus d/2 and P   both depend not only on wie noise variance and diffraction 

but also on the a priori choice of r^. and TU. 

It is not immediately clear from (102) just how diffraction olays * 

role in d/2 and P •   In order to nee this role more cleu. ly consider the e 

case when TU s -«, 

v. a 

3 + e^2/4ff2-4e^2/4,r2]]\ (103) 

Now the importance of the diffraction ratio R as defined in (28) 

becomes more apparent since R is in this case 

(104) 

where k is an arbitrary constant which together with o- specifies the 
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"width" of the point spread function (i. e., kr controls the aperture 

opening) and 7 being the separation is defined as the source width« 

The basic trade«o££ between diffraction, noise, and P   can be seen 

rather easily now«   When R becomes large fy "♦ 0 for fixed 0}, then, as 

one would suspect d/2 approaches aero wfaish drives the P   to 1/2—«the 

worst case.  Alternatively, vdien R becomes small (y -*■ 00 for fixed <r) 

then 

1^ 
2 

_ n 

!P 
i 

(105) 

and the probability of error reduces to a quantity which depends only upon 

2 2 the noise variance or    «   Not until cr     -»0 does P   approach aero in this n n e 

last case«   (The ratio R may also be varied by fixing y and varying or, 

Howe < r, as discussed previously, the qualitative results are similar, 

and we have considered throughout the paper a fixed optical system which 

views various objects«) 

In addition to the above discussion on limiting cases, we wish to 

consider a more detailed presentation of the variation between the 

pertinent quantities.   Figures 3-6 comprise the resulting presentation, 

in order to vary the a priori information, i«e«, i\. and IU, three cases 

were considered;  Case 1, T|. ■ -i},, case 2, TK ■ -1/4 i). and case 3, 

T). ■ 0 and iu «7.   The variation of R was appropriately accomplished 
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by- fixing the aperture (or a 1/2} and setting k > 4; thus the point spread 

function (83) contains 95% of its area within the "aperture width'1 of 

4* « 2.0. 

The variation of the error probability with diffraction is shown in 

Figure 3«   The limiting eases discussed previously are evident:  (1) As 

R becomes smaller then P^ for all of the curves approaches a quantity 

which depends upon the noise; note that this quantity change« noticeably 

as 0Pa  for case 1 decreases from 1.0 to , 001; (2) for R large then P 

approach«» 0, 5.   An interesting feature shown in this figure is the 

trade-off between a priori information, diffraction and P   for constant 

noise («r^   ■ 1« 0).   For R small case 1 (the two symmetrical point sources 

compared with a source at tb« origin) has the lowest P , but for R large 

case 1 exhibits the highest P • 

This result may contradict one's intuition at first glance, but as 

the images are studied for th« 3 cases it may be visually seen that for 

R small it is easier to discriminate between fixe images for case 1 than 

those for case 3 or case 2«   On the other hand, for R large enough that 

the two symmetrical sources of case 1 are located "under" the point 

spread function (7 < 2, 0) then it is easier to discriminate between the 

images of case 2 or case 3 than those of case 1 because one of the 

asymmetrical sources of case 2 and case 3 remains outside of the point 

spread function width longer.   That is, R has to become larger (for 
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case 1 than case 2 or case 3) for both of the sources in case 2 or case 3 

to be located within tht» point spread function width« 
2 

To farther illustrate the effects oi the noUa level o*    on P   Figure 4 
2 

shows P   vs. log (1/ov  ) for    fixed large vüue of diffraction (R « 10.0). 

This figure clearly illustrates that even for R large, P -*0 for sufficiertly e 
2 

small r    , thus confirming the notion that noise nc t diffraction is tae 

true limitation,   It is also interesting to note the advantage of a priori 

2 2 knowledge in that the figure indicates a savings of about 10   in o-      (ENR) 

when caoe 3 Is compared U case 1 for P   a 0« 0. 

Figure 5 hidicates the db loss incurred by increasing diffraction 

while maintaining a P   referenced at R ■ 0.0»   This figure shows that e 

the diffra ction effect acts essentially like a ncise amplifier and indicates 

that, regardless of the initial noise level, the effects of diffraction alone 

can cause considerable ENR loss.   For example, if the discrimination 

procedure produce-.', a satisfactory P   for R ■ ,4, then to maintain this 

same P   fvr R ■ 4. 0 would require a 21.8 db increase in ENR« 

1» reiteration of the concept of diffraction, a small R does not imply 

that P -*0 since as H"*0 the P   still depends upon the uncertainty caused 

by noise.   In this respect the P   for R small could still be rather high 

(perhaps even , 5),   Thus the db loss thown in Figure 5 is that loss 

incurred or similarly the increase necessary to maintain a P   referenced 
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We also desire to indicate the variation of the db loss incurred when 

the noise (ff^ ) as well as diffraction varies.   Figure 6 illustrates this 

variation.   In this figure the ENR is referenced by fixing both R and <r 

such that P^ a . 05«   Two points are illustrated \f this figure:  (1) We 

can, as was also illustrated in Figure 3, trade <r     for diffraction and still n 

maintain the same P   (thif is seen as we observe for the 0 db reference 

joints that by decreasing cr     from 1« 0 to • 001 we can increase R by a 

factor of 10 while still maintaining a P   > . 05).   (2) The large diffraction 

effects are rather severe and could impose a severe limitation to th 

detection process unless the noise can be greatly reduced« 

The results of   ie detection problem just considered afford a rattier 

complete look at the basic problems imposed by diffraction and of the 

basic relationship that noise (cr    } can be traded for diffraction (R).   The n 

next section asks a related question with regard to the information to be 

regained from tho image and provides further insight as to the rather 

broad applicability of the relationship just mentioned. 

Separation Error Bound vs. Diffraction 

la this section we investigate the error variance associated with 

estimating the separation of two point sources when no a priori information 

is given as to the location of these two sources.   The problem is formu- 

lated as follows* i 
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We consider the image due to two point sources located at tu and tj 

and determine the covariance matrix of the errors in estimating tu and t)9. 

We then define as a new random variable the separation 7 »  hz'-'lil  a&d 

find the error statistics of this new random variable from those of TJ   and 

V 
The model considered is 

bdJ.qfc.t^T^ + nU) (106) 

where the observed signal is bft) and n(|) is Gaussian white noise.   For 

these conditions Swerling (1964) has shown that tb« limiting elements for 

the inverse of the error covaxL-mce matrix of TU and TJ, are 

2 ^qdinji^)  &«(ltni»n2) 

on* ^j 
d|. (107) 

Again we consider the case vtdhen the point spread function is 

specified by (83),   Thus when x(er) a 6(<r-T) ) -f- 6(ar-n I 

l   r-a-n/tto*   .(. ^)2/af2 

(108) 

For convehience let the covariance matrix of t]   and r)   be K.    Then 

from (107) 
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(K"l)u « {Kl)n n —i  (109) 
ZN/iN 9 

aad 

Z.    2 

<K-l)l2 . (K-'jj, -  ' (arVj. (110) 
o 

From (109) and (U0) var (^ and cov (n^n-) <?»» fe« determined. 

Then, as referred to previously, we define 7 « ^z"11!   and determine 

tiie error variance of this parameter (the separation) from 

var (y) a var fy) + var (ii2) - 2 cov (rij,^) (1") 

The resulting limiting error variance of the separation is 

V « 4N/ff  N0<r3 

1 -e"^ /4<r (l-^/ar2)/    . (112) 

This expression may be regarded as the lower bound variance for all 

of the estimates of the separation which are minimum variance unbiased 

estimates. 
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We seek to investigate the variation of this error variance with 

diffraction and noise*   A« in the detection example we fix v ■ 1/2 and 

consider that R • 2, 0/Y*   The limiting cases are comparable to those 

resulting in the detection example»   For R large (V^O) then the error 

variance approaches infinity and the separation between the point sources 

cannot be regained.   Y/hen R is small (V^to) then 

N 
(113) 

and here as in the detection problem the error depends upon the noise 

variance (in this case N /2 s «r    ).   Not until N -H) does the error on o 

variance approach zero. 

To further illustrate the trade-off between the error variance and 

diffraction for a fixed noise level we ccnsider Figure 7 which shows the 

db loss vs. 1/R (tiie separation in this case)«   The db loss is referenced 

for R « 1.64.   This reference was chosen because the general curve of 

error variance vs. R has a weak minimum at R s 1,64.   The existence 

of this minimum appears to violate the general relationship that the 

error is proportional to R, and as yet no physical or mathematical 

reason is apparent which explains the existence of the minimum.   However, 

once R > 1« 64 the same general relationship shown previously for the 

discrimination problem exists between V and R.   For example, suppose 

■'r':\^^-i-'^  -J-   ■ 
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that we were satisfied with the error variance achieved lor R ■ 2,0; 

then in order to maintain this error variance for R « 10 we must provide 

for an increase of 10.8 db«   Thus, as Figure 5 illustrates, the effect of 

increasing R (decreasing the object sise) is essentially one of amplifying 

the existing noise level, and in order to maintain a constant error 

variance we must increase the SNR.   Also noted is the rather severe 

limitation imposed by excessive diffraction.   This same comment, as 

we shall demonstrate, applies to the numerical solution when restoring 

incoherent objects« 

The next section presents and discusses several noise models which 

are applicable to the restoration problem and develops the minimum MSB 

estimate, which is used as the basic solution in this paper to restore 

objects* 
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OBJECT ESTIMATION 

The •equence of this section is as follows.   First we discuss ard 

present the noise models associated with the restoration problem.   The 

basic sources of noise considers« are the additive background noise and 

the multipl*citative detector noise. 

Next we consider using the functional form of the multiplicitative 

density function in estimating the object vector from the Baysean approach. 

This approach offers some insight as to how a priori object information 

might be encoded, but as will h- discussed two basic drawbacks to this 

approach are that the additive noise is consiiered as a non-random 

variable and that the use of a priori object information in the inverse 

operator is not possible for the mathematical model considered. 

From the Baysean approach we move on to the minimum MSE 

approach.   Here we consider the additive noise as a random variable and 

are able to utilise a priori information in the inverse operator in a 

strikingly similar manner to that shown by Phillips and Twomey.   With 

a reasonable assumption for practical problems, it is easily demonstrated 

that the MSE estimate, when multiplicative effects are considered, differs 

only by a multiplicative constant from the case when these effects are 

neglected«   Since both of the noise models can be effectively represented 

in the MSE estimate and since a priori information can be profitably 
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encoded, the basic tool for object restoration used in this papor is 

considered to be the MSE estimate. 

Although the MS£ estimate effectively accounts for noise axxd uses 

a priori information, it is not the ultimate estimate«   As an indication 

of one of the areas where the MSE estimate could be improved upon, we 

conclude this section by discussing the minimum distance estimate for 

the object x(a)« 

'& 
Noise Models 

Figure 8 shows the block diagram of the imaging pi ocess and 

indicates the sources of noise. 

The additive model 

The general term additive noise, as previously used, has referred 

to the observed quantity, either intensity or mean counts, which is present 

when the object radiation is absent.   The radiation which causes this 

intensity or mean count fluctuation is often referred to as »background« 

radiation and is that radiation which accounts for stray light fluctuations 

as well as the background intensity in which the object intensity distribution 

is immersed.   V/e assume here as Helstrom (1964) does that this noise 

is basically additive.   In discrete form the additive model Is 

•v»« 

b s q + n e Ax + n (114) 

i 
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Figure 8.    &lo   ^ diagram of the imaging process with noise sources. 
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(114) 

where n it the additive noise vector« 

The multiplicative model 

When the radiation strikes the detector, which is often a photo- 

multiplier tube, a single photoemissive surface or photographic film, 

the general nature of the reaction must be described in statistical term«. 

To more accurately describe this model the surface of the detector is 

considered as being divided into N cells each with incremental «xea dA 

small enough such that the intensity impingiag upon any one cell is 

constant, throughout that cell«   in practice, it is convenient to characterise 

the detector surface by a scalar parameter known as the quantum 

efficiency, which we shall denote as t).   Under suitable practical 

conditions the mean number of counts observed in a tixr.3 interval of 

length T in each cell may be taken as 

i     hv     1 (115) 

where b  is defined as the i    incoming intensity component due to signal 

q. plus noise n., h is Plank's constant and v is the mean frequency of the 

quasichromatic radiation«   Furthermore, the counts (number of resultin<* 

photoelectrons) k. can be assumed for suitable conditions which have been 



74 

verified in practice (Mandel, 1959; Goodman, 1965) to obey the Poisson 

diatribution 

k   -Db 
(ObJ le      i 

?tVbi>-~Ty ' (l16) 

where 

D"|f-. (117) 

It also appears to be reasonable to asuuxne that the counts in each 

cell are statistically independent from those in another cell (Helstrom, 

1964).   Thus 

k.   -Db. 

wv-U-^rri— (ll8) 

wüere k is the count ve jtor -with components Ic. 

Equations (115), (116), and (118) constiiute the various stages of the 

detector noise model* 

Temporal variation 

As a further discussion of the noise models we elaborate on the 

assumption that is made with regard to temporal variation*   In the 

Imaging Equation section it was stated that the scalar quantity as 
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described by (2) specifies the electromagnetic field radiating from a point 

in the object plane as a function of distance and time.   In carrying on 

with the derivation of the imaging equation we assumed that no information 

regarding time variation would be considered*   To make this assumption 

more explicit we state that the reason for this assumption is that 

instruments for measuring intensity generally cannot follow the instan- 

taneous fluctuations at optical frequencies (Helstrom, 1964)«   Thus, in the 

strict sense the observed intensities (b and n) and the estimated intensity 

x are time averages.   This does not imply that the observed quantities 

b and n are fixed and known*   That is, we consider that a priori information 

is available about these observable quantities, and in the general case we 

consider that a priori information may be available about the object x. 

In fret, in practice the time average will only be taken over a finite 

observational interval, so that from a practical point of view b, n and x 

are only sample means and not true means«   This consideration allows us 

to consider a more flexible model of add ttve noise variation in that the 

mean noise intensity n may vary from observation interval to observation 

interval as well as spatially.   In the practical sense then, n is still to 

be considered as a random vector with covariance matrix K   in which n 

any one or all of the terms in K   are nonzero and reflect our uncertainty 

about the true noise vector.   Further discussion concerning time 

variation is presented after the derivation of the MSE estimate near the 

end of this section. 
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Ditcmsion of the Baytean Approach 

The motivation for diicussing this approach is due to the general 

insight which this method of estimation theory has in the past provided 

for problems of this general type, particularly with regard to the 

profitable use of a priori information. 

The term Baysean as used here refers to the general estimation 

schemes that have been developed using the density functions in Bayes* 

theorem*   For our problem Bayes* theorem is. 

jP{k/x\£{x)4x 

where f(x/k) is the a posteriori density function, P(k/x) the likelihood 

function, and f(x) the a priori density function. 

Three estimates, the maximum likelihood (ML), maximum 

a posteriori, and Bayes' may in principle be obtained from (119) once 

P(k/x) and f(x) are specified.   We first present the derivation of the ML 

estimate«   Next we discuss a problem which arises as we attempt to 

determine the Bayes' and maximum a posteriori object estimates.   We 

will indicate how this problem, which is one of mathematical complexity, 

can be alleviated at the cost of losing the use of a priori information in 

toe inverse operator.   In conclusion we will present the form of the 



77 

resulting Bayes* and maximum a posteriori estimates and discuns the 

insight it provides as to the weighting ol a priori information« 

The ML estimate is defined as that set of parameters x (which for 

this estimation procedure are regarded as fixed hut unknown), such that 

the likelihood function P(k/x) is maximised (Mood and GreybiU, 1963). 

In obtaining this estimate as well as those which follow in feie discussion 

the additive noise is assumed to be fixed and known. 

Finding the object estimate which maximises P(k/x) in (118) is 

accomplished as follows.   Since the natural logarithm is a monotonic 

function of its argument, we can equivalently maximise 

L(x)»inP(k/x), (120) 

Upon differentiating L(x) with respect ao an arbitrary component a! x, 

say x   , and setting the result equal to zero we obtain 

SMx) N 

m     Ul 

k. 

+ n. -D aima0 (121) 

M 
where q. s 2 a-.x..   Noting that this equation holds for all m s 1( t.. t Mf 

then 

vA s 0 (122) 
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where v is aa N x 1 vector ^oee 1    component is 

ki 
via 5^ "D# (123) 

Clearly, if A Is square {M«N) and nonsingidar, then the estimate x 

can be found from 

v « 0. (124) 

Since we have MsN equations of the form 

M k. 

Aen we can solve for the ML estimate« which is 

x s A'V/D-n). ^26) 

The ML estimate does not provide any new information which would over- 

come the basic problem of an unstable A matrix whose inverse operates 

on a noisy observed vector*   It does, however, indicate that the ML 

procedure results in the straightforward inverse operator which operates 
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on a modified count vector (modified by dividing out the multiplicative 

detector effect and subtracting the fixed and known background intensity n). 

Al was demonstrated by Phillips (1962) the addition of a priori 

information does alleviate the unstable A matrix problems; thus we seek 

to investigate the Bayes* and maximum a posteriori estimates which use 

the a priori density f(x)«   The Bayes* estimate considered here is 

obtained by minimising the quadratic loss function, while the maximum 

a posteriori estimate is designated as the vector x which maximises the 

a posteriori density f(x/k)t   The success in obtaining these estimates, 

as far as mathematical tractability is concerned, depends largely upon 

the form of f(x).   Herein lies the problem, referred to previously.   The 

form of f(x} must be such that one can mathematically solve for either 

the a posteriori mean in the Bayes* case or determine a unique vector x 

which wiU maximise f(x/k)«   Thus far we have been unable to specify a 

nontrivial f(x) to enable these estimates to be determined.   The apparent 

difficulty is due to the functional relationship between the object x and 

the image Ax. 

We htt/e, however, been able to specify an a priori density for the 

image vector b which enables the determination of the optimum estimate 

for the image b.   This density is the joint gamma density, which it 

£(b,-i.r-^— (,27, 

■ 
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Ui where the paramoters c  and u. specify the mean b. = — and the 

2 * variance var (b.) ■ u./c. •   Here we have assumed that the intensity b 

is independent from b. for all i and j, 
I il 

Utilisation of f(b) as specified above with the Poisson distribution 
I f 

allows the determination of the a posteriori density f(b/k)t which is again 
i 

a joint gamma distribution with parameters D + c. and k. + u. which 

replace, respectively, the parameters c. and u. in (127).   With the 

specification of f(b/k) in the form of the joint gamma distribution, we 

can solve for either the Bayes* or the maximum a posteriori estimate 
.A 

for the image b«   Using this estimate we consider that a reasonable, 

although suboptimum, procedure is to operate on b to obtain an estimate 

for x. 

This procedure is easily accomplished for the Bayes* case.   Since 

the Bayes* estimate is the a posteriori mean we have 

ki + ui 

x 

Using the procedure just di». ussed, we have N equations of the form 

b^Sax+n^-—. im) 
j«l i 



81 

For A nonsingular and (M«N) then the «ubopttmum estimate lor x is 

x « A"1 [kc + bc-n) (130) 

where k   and b   are, respectivelyt N x 1 dimensional vectors witia c c 

components 

k. 

ci      D + Ci 

and 

ei D+Ci 

with b. « u./c..   The suboptimum maximum a posteriori estimate for x 

is found in a similar manner as that demonstrated in obtaining the ML 

estimate.   Its form is essentially that of the Bayes* estimate shown in 

(130). 

In order to discuss the insight Bayes1 estimate provides in using a 

priori information, we consider 

-      N .i 

^Ö>ö^V-i (131) 

where the a" 's are the elements of A" . 
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Recall that the constant D is defined in (117) and contains the 

observation period T,   if T become« large, D becomes large and the 

observed counts k approach the mean counts a. and thus k /D approaches 
• i j 

the mean intensity b.« 
i 

The mean and variance of the j*11 prior gamma distribution are 

i 2 Uj   j *** uj   j '   Thu$» ««»«»ally speaking small c. values correspond 

to large prior uncertainty, since the variance is large and the a priori 

distribution is rather broad and flat. 

Now refer to {131) and consider the case when c. is small and D is 
»I 

large«   Here we see that the estimation procedure weights the observation 

much more than the a priori mean component &..   This case corresponds 
■I 

to very large a priori uncertainty« and naturally we have little confidence 

I       — 
Alternatively, consider the case when c  is large and D is small. 

The situation is the reverse of that just considered.   We weight the a 
•a 

priori mean b heavily now and almost disregard the observation k., 
| J 

Here the estimation procedure reduces to one of essentially "cleaning up" 

or enhancing the a priori mean b.. 

Minimum M5E Approach 

In this section the estimation problem is approached from a 

different point of view, which does not require the specific functional 

? 
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form of the a priori density or the likelihood function to be specified.   We 

now assume that the additive noise vector it random and treat two basic 

types of MSE estimation.   The first is the "classical" least squares 

approach, which assumes that no a priori information about the object is 

available and that the additive noise has sero mean and covarianee matrix 

or     I.   Secondly, we consider the more general case when the noise 

covariance matrix is K , and we take advantage of encoding a priori 

object information in the lorm of the prior mean x and the covariance 

matrix K • 

Before beginning the two approaches the noise model is more 

explicitly seated.   Recall (115) and note that 

8i/D-^ijVai (132) 

or 

bis s Vj + V (133) 

Since n. is a random variable, the quantity zjD or b. is now a random 

variable.   If n has mean zero, which we can assume without loss of 

generality, then the model is 

I" 
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b«b + n (134) 

where b a Ax and 5 is the mean of b. 

Classical least »quarea 

The classical least squares approach presented here has been treated 

by several authors.   The reader is refe*-*4 to Mood and Greybül (1963) 

and Deutsch (1965) for lurther discussion»   It is instructive to mention 

that in the general case treated by Deutsch (1965), the assumption of a 

linear relationship may be nece^-ary between the unknown parameter x 

and the obae 'ved random vector b.   However, in the restoration problem! 

this assumption is not necessary since the imaging process is inherently 

linear» 

2 
We consider here the case for K   s o-    L   Tue parameter x is chosen 

n      n 

to minimize 

R(x) = (Ax-b)* (Ax-b) (135) 

or alternatively 

NM , 
R(x)*S(Sa  x-br. (136) 

isljal XJ J    l 
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The parameter x is determined in the usual manner by differentiating 

R(x) with respect to an arbitrary element of x, say x   , and setting the 
m 

result equal to zero«   In summation form 

N M      A S a.     (S a..x.-b.) a 0. 
isl   »m Jal ij J    x' 

(137) 

since this expression must hold for all m s 1, •,,, M, 

At Ax a A»b. (138) 

if (A«A) is nonsingular, then the estimate is 

■c « (A«A)"1A»b. (139) 

V/hen A is square and nonsingular 

A A "1^ x s A   b. (140) 

Thus, the classical least squares approach results in the same basic 

inversion form as shown in the ML case and as seated in the Im vging 

Equation section«   Even though statistical methods have been used in 

attaining this basic form, we still have not been able to gain much 
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additional insight which would enable us to wvercome the problems of 

instability ana noise referred to earlier«   The inclusion of a priori 

information as shown next does, however! provide conaiderable insight 

into these problems« 

The general minimum MSE estimate 

Now we assume that a priori information is available in the form of 

the prior object mean x and the covariance matrix K •   Information about 

the noise ve' tor n is assumed to be available as »needed in the covariance 

matrix K , and we assume that the noise mean is zero.   We further assume n 

that x and n are independent« The procedure which follows in obtaining 

the general result (149) was first applied to the restoration problem by 

Rushforth (1965)« 

We postulate a linear model which enables the use of K , x and K . x n 

We assume that x and the random intensity vector b are related by 

xaHb + g (Ml) 

where H is an MxN matrix and g is an Mxl column vector.   We seek H 

and g such that the quantity 

MSEsEt(x-x)« (x-x)] (142) 
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is minimised where x represents the true object.   Once H and g are 

determined, then the optimum estimate x is found by substituting these 

quantities into the expression for x above. 

Recall (114) that b s Ax + n.   It can be shown (Ruihforth,  1965) that 

the vector g can be written 

g « (I-HA>. (143) 

Substitution of (141) and (143) into (142) yields 

MSE a tr ^[HfAx + n) + (I-HA^-x] 

[ H(Ax + n) + (I-HA)x-x]' | (144) 

where tr denotes the trace of a matrix.   Upon expanding (144) and 
i 

performing the expectation over x and n we can write (144) in the following 
l 

form: 

MSE s tr/H[A K A« + KJH«-K A»H»-HAK   + K ]. (145) 

To solve for H we complete the square in (145) and obtain 
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K A« + K r - K A«(AK A« + K )"*! e s tr/[H(AKxAi + KJ* - KANAKA« + K^"1] 

)* -K A«(AK A« + K Pi« [H(AK At + K )a - K A«(AK A« + K ) s]« 
x n x x Q 

+ Kx-KxA«{A KxA« + K^"1 A Kx j. (146) 

Now the minimizing value of H is easily determined by equating either 

one of the two expressions in brackets above equal to zero.   Thus, 

HaK A»(AK A»+K r1. (147) 3c    *     x n' 

Further manipulation reveals that H may be represented in the alternate 

form 

H » (A»K ^A + K "lrl A»K ml, (148) *      n x    # n 

Using equations (148) and (143) for H and g the general expression for 

x is 

x s (A«K 'lA + K "W'K mlh + K "1x). (14^ y      n x n x 

An important quantity to consider in the evaluation of hew well x 

performs is the MSE which results when x is used.   The resulting MSE 
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is found as follows.   By substituting H into (146) and noting the equality 

of (147) and (148), the MSE expression becomes 

MSE 8tr|K -(A»K ■lA + K "S^A'K "lAK   {. (150) 

Thus, 

MSE = tr/(A»K ^A + K "VWK mlA + K"1)» -A'K"1/ K ll. (151) (        n x    '    ^     n x  '   x        a        xJi   ^      ' 

The quantity in brackets in (151) reduces to I; thus, the general expression 

for the MSE reduces to 

MSE = tr f(A«K "1A + K ''1 )"11. (/      n x  f 

J 
(152) 

Multiplicative effects for the high SNR case 

We assume in this paper that the observed quantity is either intensity 

or mean counts.   That is, the observation interval is assumed to be 

long enough so that when the detector is present the actual number of 

counts k. is a very good approximation for the true mean counts a ,   Thn? 

when 

k.« z., (153) 
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the optimum estimate for x is 

x ■ [A«K"lA + K"l]"lrA«K'l(«/D) + K"1^]. (154) 

In practice when k deviates significantly from z.t we mußt consider 

a more sophisticated model such as that treated by Austin (1966) in which 

he assumed that we observe counts as they emerge from the detector but 

estimate the mean intensity x of the object«   This treatment adds insight 

(in the limiting case for T -*■ oo the estimates are the same), but indicates 

that much more complexity is involved in the restoration process when 

counts are observed. I 
i 
i 

An increase in T essentially implies an increase in SNR.   The 

evidence presented in the Analytic Results with Noise for Specific Cases 

section and the Simulated Object Restoration section indicates that for 

reasonable restoration (for R > 1.0) we must consider the high SNR case. 

These results indicate that the SNR must be high enough so that we can 

neglect the more complex model and just consider the general case (154;. 

By high SNR we are implying, generally speaking, that for the diffraction 

range considered (R > 1« 0) the SNR must be high enough to neglect the 

detector except for a multiplicative constant. 

Another way of stating the high SNR assumptior is to Mate that the 

SNR is high enough so that the central limit theorem applies (Parzen, I960) 
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and we have Gaussian rather than Poisson statistics«   In this case it is 

easily demonstrated that if k «a  then the use of Gaussian distribution 

functions for f(z/x) and f(x) result in a Bayes» estimate or a maximum 

a posteriori estimate that is equivalent to (154),   Thus, the assumption 

of high SNR ties the Baysian and MSE approaches together. 

To follow up the earlier discussion on temporal variation, the high 

SNR assumption implies that the observation interval is long enough so 

that n, b and x are sample means with respect to time that are near, but 

not eqxu 1, to the true temporal mean.   Thus, K   and K   reflect our x n 

ignorance of the true quantities«   As is the usual case, large elements 

in K   and K   imply a greater uncertainty than small elements« 

Next we consider special cases of the general estimate (149) and the 

MSE (152) and diacuss the trade-off between a priori information and 

noise« 

Discussion of the MSE estimates—special cases 

The trade-off between a priori information and noise is easily seen 

2 2 
when K   s o-    I and Kar    I,   The general estimate (149) becomes 

f 

x = (A»A +<r 2Ar VV'b + * * I* 2x). n     x  '    * n     x    ' (15J; 

«& 
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2 2 
Consider the case when or     >>ff

n •   This case corresponds to large 

a priori uncert^int>     ''^re, as before in the discussion of the Bayes and 

maximum a posteriori estimates, we tend to weight the observation vector 

b much more heavily than the prior mean x.   On the other hand, when 

2 2 
o*n   >><r

x * w* have a noisy observation vector b and we weight x heavily. 

Expressions (149) and (155) gives us more insight than (130) in that 

the basic inversion operator is also modified in accordance with a priori 

information.   Note the similarity in form of (155) and solution (47).   The 

analogy between the various quantities in these two equations is also 

evident.   Particularly is this so when the covariance matrix K   is 

compared with H and the a priori mean r is compared with the a priori 

vector p.   The fact that ooth of these approaches result in the same basic 

form further enhances the use of a priori information in the inverse 

operator, and it will be demonstrated that an essential part of the 

restoration process is the stability control offered by use of this 

information« 

In order to «how how the general case (149) reduces to the classical 

MSE estimate (139) and to introduce the problem of measurement 

selection, consider the case when there is essentially no contribution due 

to a priori information*   In this case the estimate (149) may be written 

x 8 (A'K^A)"1 (A'K^b). (irr.) 
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This is known as the Markov estimate and corresponds to the minimization 

of the weighted least squares 

R(x)8(Ax-b)K"1 (Ax-b) (157) 

where as before K   is the noise covariance matrix (Deutch, 1965).   When 
2 

K   « ff    1, the white noise case, the estimate in expression (156) reducon 

as it should to the classical least squares estimate of (139). 

When the elements in K "   are small compared with those in A»K " A 

the error (152) reduce:* to 

MSE atrt(A«K ^A)"1]. (158) 

When K   a <r fcI we have n      n 

MSE »a- 2tr((A»A)"1], (159) 

or the equivalent form 

2 N 

MSE a <r      E 
n    inl 

U^ (16C, 
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where the -^ are the eigenvalues of the A matrix.   This fcrm (160) was 

also suggested by Barnes (1966b) as an important form to consider when 

studying the effects of diffraction when using the classical inversion 

proce s. 

When K   is specified in (158). only the A matrix can be varied to n 

reduce the error.   This Is both a nontrivial and important problem.   It 

is nontrivial because it is very difficult to solve for optimal conditions 

that will specify the A matrix for each restoration.   It is important 

because, as will be shown, the MSE can be reduced considerably (by 

several orders of magnitude) by just knowing where to measure the imag« 

and where to predict the object. 

. Austin (1966) has been able to solve for the optimal condition in a 

special case.   The special case is one in which the image is assumed to 

be the summation of equally spaced diffraction patterns from known point 

2 sources which are separated by the Rayleigh distance and K   = <r    I.   For 

this special case he showed that the optimum image measurement 

locations are above the known point source locations which are trans*1 irre«:! 

to the image plane*   In this case A = I, and the MSE becomes 

MSE a«r 2 M. (16]) 



* 
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In this paper we consider the more general and more important case 

since we conaitMsr here that the object is to be both unknown and continuous 

and that the diffraction effects are severe enough so th \t we must predict 

at points separated by a distance which, for most cases, is only a small 

fraction of the Rayleigh distance*   To further specify the case we consider 

in this paper, we reiterate that the value of R is to be greater than unity. 

(The case Austin (1966) considered holds for R < 1.0,   For R « 1.0 the 

number of point sources M s 3.0,)  ForR > I. 0, the optimum scheme 

for choosin; the A matrix parameters has not bee   solved.   However, in 

order to provide a rather complete computational procedure, the variation 

of the parameters which determine the A matrix, and thus the MSE hac 

been extensively studied by numerical methods.   Results of this study 

and the computational insight which they provide for the working 

restoration procedure are presented in the secuon entitled "MSE 

Variation—Choosing the A Matrix Parameters." 

Perhaps the outstanding problem which remains to by solved is that 

of initially estimating the size of the diffracted object.   This important 

problem is discussed further below. 

Minimum Distance Estimation 

Minimum MSE estimation considers the minimization of functional 

differences between the predicted object and the true object.   The integral 
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equation, however, requires that we also choose other parameters before 

the vector x can be estimated«   For example, M, N, the aits, the ^i's 

and the w. must r U be chosen before estimating n,   Evidence for making 

intelligent choices for all of these parameters is discussed later«   Hore 

we present a minimum distance criterion which accounts for both the size 
■" 

and functional shape of the object. 

Visually, diffracted objects appear smeared or spread out.   The 

size of the true object is not known.   To effect a better restoration than 

the MSL estimate w* consider choosing a and x such that the following 

mean square distance is a minimum: 
i 

| 

■ 

+[«^]i|ff-a]7, (162) 

i 
i 
i 

The minimization of this expression implies choosing a and x together. 
I 

No analytic results have been obtained for accomplishing this task.   The 
l 

problem thusfar has been that the size and object functional values are so 

intimately related that we cannot estimate one without knowledge of the 

other. 
1 

In the absence of an optimum size estimate, the object size and I 

likewise the diffraction have been initially estimated by subtracting the 

poiuk «pread size from the imago size.   Using this initial &ize estimate, 



we have then sequentially estimated the object size and shape together. 

However, it appears that we can do better, and future efforts undoubtedly 

should consider this problem. 
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SIMULATED OBJECT RESTORATIONS 

In this section we present the results obtained from actual numerical 

computations performed on a digital computer which simulate   the 

various restoration solutions developed previously.   The major computer 

program used in performing these simulations is presented in the 

Appendix«   All of the solutions which utilize a priori information in the 

inversion process have been investigated«   Tie MSE solution with the 

additional computational feature of iteration has been used most 

extensively« 

For all of the simulations we have considered the one-dimensional 

incoherent point spread function 

h(|-«) * 8inc2(|-a) (163) 

where we have fixed the aperture, as previously discussed, so that the 

Rayleigh separation is unity*   (Equation (163) describes an optical 

configuration with unity magnification.   This involves no loss in generality 

since it is always possible to normalize the object-image coordinates 
I 

so that the magnification is unity.)   Using (163) the imaging equation is 

r      2 h{i) * / sine (e.«)x(a)d». (164) 

-a 



for -a<äf'<a A 

*<*> "   |    0 el-e^here" ) «lo5> 
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Results are presented on the interrelationship between the diffraction 

level (R), the noise level in the image and point spread function, the 

choice of parameters which govern the A matrix, and the amount and type 

of a priori information used.  Also considered is a method of smoothing 

the image when we encounter excessive noise« | 

In this section the results of the interrelationship just mentioned are 

discussed as the section proceeds.   For a summary of these inter- 
i 

relationships and the computational scheme which has been developed 

the reader is referred to the Summary and Conclusions section.   The 
I 

computational scheme is also discussed in the next section entitled "MSE 

Variation—Choosing the A Matrix Parameters." 
f 

Before presenting the simulations, it is necessary to present a 

clearer picture of the simulated restoration process by discussing three 

general areas.   These areas consider the objects to be restored, the 

image and A matrix accuracy, and the choice of a restoration improvement 

criterion. 

Objects to be Restored 

Basically four objects have been considered.   These are the uniform 

pulse. 



the smooth pulse, 

100 

x(ot) f cos knar for -a < er < a 
0 elsewhere 

(. 

J 
(166) 

two uniform pulses. 

0 elsewhere 

(167) 

and two smooth pulses. 

X(0f)=     i 

(cos kiT(tt-<p) for - 

0 elsewhere. 

al £* ^al ] 
a7 <a <a- ( 

-2j 
(168) 

The motivation for considering these basic objects was as follows. 

First,  recall that the solutions investigated utilize a smoothing parameter 

2 
which in the MSE case depends upon the noise variance <r     and the a priori 

2 
variance «r    .   Phillips (1962) has mentioned that his solution should work 

for x(ar),s that are smooth.   In order to gain an estimate of the loss 

involved when the objects are not smooth, various smooth (cos kna) and 

non-smooth (the uniform pulse) objects have been chosen.   Secondly,  it 

is interesting to determine how well the restoration procedure can 

restore split sources.   Such objects are certainly difficult to restore 

(perhaps the "worst case" would be a large number of split sources 
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which are very closely spaced), and they provide a more absolute 

criterion as to how well the restoration procedure performs.   Furthermore, 

the resolution of split sources which have been excessively diffracted 

provides a good comparison with the classical Rayleigh criterion. 

Image and A Matrix Accuracy 

As has been previously emphasized, noise is the limiting factor in 

the restoration of optical objects of finite extent.   Thus, iu the simulations 

which are to be presented it is important that we specify the procedures 

used to obtain the image and A matrix and to provide measures as to the 

accuracy of these quantities.   This section presents this information. 

Obtaining the images 

The images used for the restoration process were obtained by 

numerical integration using Simpson's quadrature.   The motivation for 

using numerical methods was essentially twofold.   The integrations for 

a variety of sources one may wish to consider cannot always be performed 

analytically.   Also,  since the restoration process is one of "inverse- 

integration, -' then it is natural that one would learn from the forward 

process, particularly in regard to the choice of the number of points for 

a desired accuracy.   A third consideration is that a numerical procedure 

allows one to determine the image for arbitrary arguments, while the 

analytic image (if available) may be difficult to obtain for some arguments. 
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All of the images were noisy in the sense that only a finite number 

of significant figures were known.   Specific bounds or limits were not 

derived which would enable us to explcitly state the exact number of 

significant figures used.   However, the number of significant figures 

available for use in the restoration was estimated in each case. 

In some cases the image accuracy available was limited only by the 

number of points chosen to approximate the integration.   These images j 

were accurate to at least 4 or more significant figures and are referred to 

as the "no-noise" images.   To obtain images with less accuracy than the 

no-noise cases, the accurate images were perturbed by an additive 

random variable. 

The determination of an estimate for the available significant 

figures and other measures of the amount of noise used in the various 

restorations are discussed below. 

Image accuracy-^'no-noise" cases 

Here we define for convenience the quantity MSF as the minimum 

number of significant figures available in the image.   This number (MSF) 
I 

is recorded on all of the restorations.   The estimation of the MSF for the 
i 

various sources follows. 

The images due to the uniform sourt      can be found in terms of the 

integral 



a 

b(^) =   / sine (£-a)dof 

-a 

which is 
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(lO) 

b(|) =   (e-a) cos Zirte+a) ■ (e+a) co« 2ir(€-a) 

2if2(e+b){e-a) 

^ j'si[2ir{e+a)) -Si[2ir(|-a)U (170) 

where 

„.. .       r sin u   . Si(x) =  j  —JJ— du. 

Using (170), the numerical image accuracy from the computer was 

compared with the true value (170) for at least one image argument.   The 

minimum number of significant figures tc which these two values agreed 

is defined as the MSF. 

To obtain the images resulting from the smooth sources, one must 

perform the integration 

a 

b(|) = ^sinc2(t-0f) cos ktr (a-<p) da. (171) 

-a 
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This integration io not easily performed analytically, nor is an 

estimate of the error for Simpson's summation easily obtained. 

For these images a rough one significant figure approximation wc.^ 

determined analytically which insured that the image values were of the 

right order of magnitude.   As a further check, the number of increments 

t 
(points) in the integration interval was increased while comparing the 

image values obtained«   The MSF was recorded as the minimum number 

of significant figures to which the two numerical values agreed. 

Image accuracy-«additive noise cases 

In the simulated restorations, the noisy image was obtained using 

the additive model 

b = b + n (172) 

where n is a Gaussian random vector of mean zero and covariance matrix 

2 
or    I«   Thus, b is a Gaussian random vector with mean b and covarisnee n ' 

2 
matrix a-    I.   In each case where noise was added, the true "no-noisc" 

n 

image value (b.) was known accurately and then perturbed by the random 

noise sample«   Thus, when noise is not added, it is assumed chat the MSF 

described previously are available for the restoration process. 

2 
It is desirable to determine a criterion which relates <r      to the n 

numbex of significant figures available for various image strengths b.. 
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Several criteria could be established to find such a relationship.    The 

criterion chosen is explained below and is one which agrees closely wUh 

the actual simulated results. 

Let the true vallue b. a 1,0, and consider choosing «r      such that 
i n 

PE-^n.^i]«! (173) 

and 

P^-il+Ptu.^]^. 

Thus 

p[i<b. <i.5] =i :m) 

and 

PE^il+PCVl.B] =1. 

Now consider the following rounding procedure.   (The image values 

were not actually rounded but the procedure is considered here purely 

for establishing a reasonable <r     vs. significant figure relationship.) 

Suppose we set bj = 1.0 if , 5 < b. < 1. 5.   If b. <. 5 we set b. « 0. 0, and 

if b. > 1.5 we set b   s 2,0,   Thus there is a probability of . 5 that b. vnU. 

■--^----^■>—■- 



p[*05>n
i
>*05l *i 

and 

Ptn. <-.05] +Plni>.05] *t. (176) 

2 
The noise variance is c      a , 055. n 

Figure 9 presents log [l/c    ] vs. the mean number of significant 
n 

figures for the various image strengths used.   The cross hatched region 

is the region used most frequently in this paper. 

Since each image varies in strength as a function of its argument, 

then for or     fixed the number of significant figures available varies over 

? 
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have two significant figures and a probability of , 5 that b. will have no 

significant figures.   In this case the mean number of significant figures 

is 1. 

To find gr     we have n 

P[i>n>i]=   T   ^rr—   du = i (175) 

-5/'n ;| 

and v      a . 55.    For 2 significant figures and b, = 1. 0, we find o-      such 

that 

_ i 
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1 2 

Mean number of significant figures 

,  2., 
Figure 9.   The log (l/«rn ) vs the mean number of significant figures. 
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2 
a rauge of value      This range corresponding to a fixed value of <r     is 

defined as SFR. and when <r     > 0 it is recorded on each restoration. 
n 

As a further measure ol image noise level we use the following 

sample mean absolute error: 

N lb. -b.l 

-.'sh^' (177, 

To indicate the relative magnitude of the noise the following percentages 

are defined, 

t    x 100 s 
max    g^ (max)  • 

ana (178) 

i    x 100 
s 

min      €. (min)   * 

In (178) the sample mean error is computed as a percentage of the true 

"no-noise" maximum and minimum image measurements used in the 

restoration process.   The reciprocals of these quantities are regarded 

as indications of the maximum and minimum SNR's used. 
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Obtaining the A matrix 

In practice the point spread function could be either measured or 

analytically approximated.   In either case some error is involved. 

However, it is well to keep in mind that the A matrix would be less noisy, 

for mar y applications, than the image because the point spread function 

could be accurately determined from many samples of the transfer 

function in a controlled low noise laboratory situation. 

We have considerc d two general cases of A matrix accuracy, one 

which uses the full analytical accuracy of the computer to determine the 

A matrix, and the more imporfint practical case when the A matrix is 

noisy.   In the latter case several levels of noise were considered which 

exceeded the image noise. 

A matrix accuracy 

The additive model used in obtaining the noisy A matrix may be 

considered from two equivalent viewpoints.   First suppose we have a 

noisy A matrix consisting of the true A matrix plus a B matrix composed 

of Gaussian random variables.   Thus the image is 

b = (A + B)x, (179) 

or 

b = Ax + Bx. (180) i 

I 
I 



I, 

no 

Since Bx is a vector whose elements are linear combinations of Gaussian 

random variables, the elements of Bx are also Gaussianly distributed. 

Thus, Equation (lft0) may be altematr.     - written as 

b=Ax+n (181) 

where n = Bx.   This model is equivalent to the original additive model in 

Equation (114).   Alternatively, if the A matrix or the point spread function 

is determined by measuring the image response to a point source, then 

we may write the imaging equatioi as 

a.. =a.. +n. (18?) 

where the a.. are the true values and n. is the additive background noise 
ij i 

referred to previously. 

To obtain the noisy A matrices Equation (182) was used with n. - 

2 - 2 - N(0. v.   ) and a.. - N(a.., c4   ),   The a., values were the analytic values 
A ' ij ij*    A »J 

2 ? obtained by the computer.   When r .     - 0 the full analytic accuracy of the 
A 

comnuter (usually 8 significant figures) was used. 

For the noisy A matrix cases we have chosen to indicate the le /el 

of noise by defining 
1 

■ 
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N M   a..-a.. i 
1-22 i-iJ—IL- t\B3) 
A     i^ijai    NM l      ' 

as the sample mean absolute error between the random variable a.. and 

the true analytic value a..,   Then we compute 

€     xlOO 
A (184) 

max  ~ a., (max) * 

The minimum percentage is not computed because the a..(min) values 

were often zero or very close to zero.   Thus the effective SNR for the 

noisy A matrix elements ranges from a minimum of zero to a maximum 

of 1/P max. 
A 

Improvement Criterion 

The choice of a measure which indicates restoration improvement 

over the initial object estimate in the absence of data processing (which 

we have assumed throughout is the image) will likely depend upon the 

application.   In the absence of a specific application we consider two 

improvement measures, the ad-hoc or intuitative visual measure and a 

mathematical measure«   Generally speaking, these two measures should 

agree, at least on a qualitative basis. 

In many problems one can assess mathematical improvement by 

using the "standard11 squared error (SE) criterion which is 
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M 2 
SE ^  S   (x. -x.) (185) 

where x. is the estimate resulting from the restoration process and x. 

is the corresponding value of the true object.   We have defined the 

I 
general term squared error (SE) so that the term for mean square error 

(MSE) can be used exclusively as defined previously.   The major difference 
i 

2 I 
between the MSE and the SF as shown above is that when <r     is finite we I 

* I I 
are inferring the possession of a priori information which we do not 

actually have.   If the prior gueas for the object is the image, then a 

2 
finite <r     will weight the image so that the estimate will, roughly speaking, 

2 
lie somewhere between the image and the true object, but because IT     it, 

finite we do not know the exact error involved. 

To continue the discussion, it was evident that visu?! improvement 

could not be assessed only by SE improvement.   In fact, as will be 

I 
illustrated, there were several cases when visual improvement was j 

apparent, but there was actually a decrease in SE improvement.   The 

>. 
dlTference is due to the fact that the SE does not account for object size. 

I 
;j 

The squared distance (162), on the other hand, does include size error, 
! 

and it agreed more closely with the intuitative visual error.   Because 

of this agreement we have chosen to indicate mathematical improvement 

by computing the following ratio 
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M                2                  2 
S [(b.-x.>   + (t-«.)] 

2         i-1     1 

l(d ) =  (186) 

S [(£,-x4)
2 + (^-or,)2] 

i=l i    i'       M    i' 

where the x *8 and or.'s are, respectively,, the true object values and 

2 
arguments and M = N.   Mathematical improvement is shown if I(d ) 

exceeds unity. 

Of course there is some arbitrariness as to the choice of parameters 

in (186).   For b , £., and M the values were taken as those actually used« 

The x. and a. were chosen such that the or. were equally spaced in the true 

nonzero source interval«   The a   and corresponding x  were chosen such 

that the estimated object w&s reasonably represented in the estimated 

nonzero source interval.   To clarify this last statement it was assumed, 

on the basis of a posteriori information, that the regions where the 

estimated object was negative or small positively were regions where th» 

estimated object intensity was zero, 

2 
The presentation of I(d ) on each restoration will allow a more valid 

assessment of improvement over the image*   Unless otherwise noted, 

the I(d ) shown on the restorations is the improvement of the last iteration 

i 
over the image. 

It is well to remark that there are two general categories of simulate'.1 

restorations:   those which assume essentially no prior size information 

and those which do assume some prior rize information,   in the former 



1 
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case I(d ) will present a valid improvement criterion.   However, for the 

2 
latter case much of the I(d ) improvement may be due to the fact that 

2 2 
the term {ai'

a
i)   i-  »ear «ero while (^i-*.)   is still large.   That is, 

2 
for the latter case it may well be that much of the I(d ) improvement is 

due to the assumed size information.   Throughout the results which 

follow we have been careful to emphasise those cases in which prior 

size information is assumed so that the reader can more critically ass«Rs 

the restoration improvement« 

Results of the Various Restoration Schemes 

The solutions investigated by actual simulations are identified as 

follows: 

Solution Description Equation Number or Raference 

MSE 
Phillips -Twomey 
Dynamic Programming—Area 
Dynamic Programming—Prior Vector 
Matrix version of the area constraint 

(155) 
(44) 
(78) 

(Bellman,  1965) 
(66) 

To identify which solution was used and the various parameters involved, 

the following information block (Figure 10) is placed on each restoration. 

Run 
Ml N Quad j Ri      R   j   ^   | Area | Prior | Iter 

V 1'* P max P   . mm SFR  JMSF  |o-A
fi    {PmaxA 

«A 

Figure 10.   Information block. 



115 

When the symbol NA appears in place of any of the quantities in Figure 10, 

it means that the quantity does not apply for the case in question« 

Run is an identifying number.   The first row of quantities under Run 

specifies the measuring and predicting scheme used and the solution used. 

The next row indicates the image and A matrix accuracy and the a priori 

2 2 variance <r     when «r     is specified.   The last row indicates the mathe- 
x n 

2 
matical measure of improvement.   The quantities M, N, 7^ R, o*    , 

2 2 
P     „, P   . . SFR, MSF. <r.   . P , and I(d ) have been explained, max'     mm* 3 *    A *     max.' v    ' 

A 
Further explanation of these parameters, as applicable, and those not 

previously mentioned is presented below. 

The following explanation refers to the parameters Area, Prior, 

and Iter, which may be used to identify the type of solution used.   To 

avoid any possible confusion^ the solution description is also recorded in 

each of the figure captions«   When Area is greater than zero it is the true 

area under the object and indicates that the area constraint was used. 

When Prior is greater than zero then the prior vector constraint was usc^. 

If Prior s 2. 0 then the image was used as the initial prior vector.   When 

Prior and Area are both zero, then the Phillips «Twomey smoothing matrix 

was used«   The quantity Iter is the maximum nur.ber ot iterations used 

in the iteration procedure«   In the cases where Iter > 0 and the Phillips- 

Twomey smoothing constraint or the matrix, version of the area constrair: 

1 * 
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were used, thi» is an indication that only the initial prior vector was 

determined by these methods.   Further iteration used the MSE solution 

(155). 

The variance er     specifies the amount of pseudo-priori information 

2      2 2 2 
assumed in the smoothing ratio or    Ar    .   Figure II shows <r     vs. or   " 

n     x * n x 
2,    2 

for various «r    Ar      ratios«   The crosshatched region is that used most 
n      x e 

frequently in this paper. 

The ratio 

pi      Measuring interval width IIRV\ 
K   8  Predicting interval width <10'' 

relates pertinent information about the measuring and predicting scheme. 

The proper choice of this ratio, as will be demonstrated, can significant/ 

alter the MSE in the restoration process.   In order to differentiate 

between the cases when one prediction or two prediction intervals were 

used for the same level of diffraction R, the prediction interval width 

in the latter case is taken as the sum of the two intervals. 

Three different quadrature weights were investigated.   When 

Quad »1,0 the most extensively used, and most powerful. Gauss 

quadrature is indicated; Quad = 2.0 corresponds to the use of Simpson's 

quadrature, and Quad = 3, 0 refers to the case when the weights were 

unity. 

5 



nr 

■-■ 
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Effect of prior information in the inverae operator 

I A« an introduction to the computational work a sequence of figures 

2 
it shown illustrating the importance of using finite or     in the inverse 

I * 
operator. 

i 
t 

Figure 12 shows the restoration of a uniform pulse by operating on a 

low noise image (MSF « 5. 0) with the straightforward matrix inverse (32). 

The esti d object is in error because more measurementB are needed 

in the restoration procedure to adequately describe the object.   That is, 

the restoration is quadrature-error limited. 

To reduce this error the number of points in the [-1,1 ] interval 

was increased from 5 to 7.   Figure 13 shows the results,and the improve- 

ment is noticeable.   Now the question to consider in further improving the 

restoration is the upper limit of the number of points one can use in the 

interval [-1,1].   The answer to this question is that the number of points 

for reasonable restoration depends upon the system noise.   In fact the 

MSB (159) depends upon the number of points one uses and increases 

2 . rapidly as this number increases.   If the system noise <r     is not small 

enough to overcome this increase in dimensioiuJlity, then poor restoration 

results.   To illustrate this, the noise level of Figure 13 was increased. 

-3 
The noise variance was raised to 2.5 x 10     which resulted in a SFR of 

1.4 - 1, 7, while the previous image accuracy was at least 5 significant 

figures. 
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Operation on the   noley   image, in the same manner as before (32), 

produced the oscillatory object estimate shown in Table 1 below.   This 

estimated object is meaningless.   The imaw9 noise is now the limiting 

factor.   A similar result in terms of an oscillatory solution was obtained 

by increasing the dimensionality to 9 and using the "no noise" image of 

MSF m 5. 0. 

The assumption of finite prior information can alleviate the oscillation. 

Consider Figure 14 where we have assumed *     s 2. 3 x lO*   and used 

the Phillips-Twomey solution.   The reduced SE in Figi re 14 over the 

values shown in Table 1 confirms the usefulness of a priori information 

in the inverse operator. 

Table I.   Estimated object and arguments for infinite v^ . 

A x a 

-300 

+200 

-700 

+400 

-700 

+200 

.300 

-1.) 

- .67 

- .33 

0 

.33 

.67 

1.0 
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The sequeatial eitimation of & uniforaft pulae 

Here- we present results on the estimation of the size and shape of 

a uniform pulse which has been diffracted 5 times greater than the levei 

corresponding to the Rayleigh .resolution criterion for two poin* sources 

(R s 10« 0)*   The importance of these figures is that they demonstrate 

the sequential estimation of an object which has been excessively 

diffracted, for the case when we have assumed virtually no a priori 

information about the true object« 

Figures 15-20 present the series.   The initial size in Figure 15 

[4*0, 1*0] was assumed larger than one would estimate on the basis of 

comparing widths of the point spread function and image.   However, 

notice that the size is substantially reduced from [-1.0, 1.0] to [ -.46, 

. 46] •   Using the updated size estimate the next figure shows further 

improvement in size along with shape improvement.   This trend continues 

until Figure 19, which no longer indicates noticeable size improvement« 

No attempt was made to "push" the results to a limit by iterating further. 

However, the impending improvement in ^ise and shape is apparent. 

When the size is assumed smaller than [ -. 2, .2], Figure 20 shows 

that the end-points of x tend toward larger values titan the true object. 

This suggests that the actual size limit of the restoration process has 
2 

been exceeded, at least for the particular value of IT     used. 
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The seyaential e»tim>tion of a smooth pulse 

Results are presented here for tha restoration of smooth cosine 

pulses.   These restorations may be eomparfcö visually with those 

presented in Figures 12-20 to assess the loss incurred when the objects 

are not smooth but have sharp cc^aers»   As in Uie last series (Figures 

15-10), these figures demonstrate restoration nvhen no a priori object 

information is used« 

figure 21 shows? that the source cos (ittt/Z) having undergone a 

diffraction such that R ■ 1.0 can be very closely restored.   Since the 

diffraction was small only one sise estimAte was necessary. 

The estimation of the source cos {Zvx) is shown in Figures 22-26* 

Both the» diffraction and image noise are greater than in Figure 22, but 

the linal restoration Figure 26 is comparable to that of Figure 21.   This 

2 
suggests that <r     in Figure 21 could have been increased with jut 

significantly degrading the restoration. 

Figures 25 and 26 are identical except for the prior weighting. 

Flgujre 26 («r     sin") shows an increase in restored detail in both the 
x 

first and 20th iter; Hon.   However, iteration 20 is asymmetrical.   This 

feature is visually noticeable at the interval endpoints and occurs due 

to computational effects within the computer«   A computational alternative 

is to chooer a low«* value of <r    , begin with a more stable initial solution, 

and iterate longer«   Here again, the solution eventually becomes unstable. 
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However, we have the option of picking any solution between 

iteration 1 and 20 of Figure 26«   Iteration 6 was very close to the true 

source, and one could ascertain by visually observing the plotted estimates 

that, as the number of iterations increased beyond 6, the computational 

inaccuracy began to increase» 

The sequential estimation of split uniform pulses 

In this series (Figures 27-32), we can assess the importance of prior 

size information.   It is demonstrated th^t the lack of eise knowledge can 

seriously affect the ability of the restoration process to restore object 

detail«   It will also be shown that we can alleviate this problem somewhat 

by considering various sixe estimates and using an alternate size 

estimation scheme in which we initially choose a very small size estimate 

instead of a large one as used previously. 

Figures 27-28 illustrate an effort to determine the outside size of 

2 -2 the object.   Notice that iteration 20 for <r     =10     is badly distorted, but 

2 -3 for o-     a 10     the 20th iteration is stable.   These figures suggest that 

the noise level is sufficiently high to limit outside size determination, 
2 

at least for the values at <r     and the number of iterations considered. 

Figures 29-30 show considerable visual improvement over Figures 

27-28,   This improvement is attributable to the assumption of the true 

outside size in Figures 29-30,   A comparison of Figures 29 and 30 allows 

2        2-5 a visual assessment of the effect in changing cr    , («r     =10     for Figure 

-6 29 but is reduced to 10     in Figure 30), 

r - 
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Figure 31 presents & restoration in w^iich *he assumed outside size 

interval was smaller thtJk the true value.   Note the high values at the 

endpoints of x which, as before, suggest that the size estimate is too 

small.   This figure also illustrates that the SE is not adequate in 

measuring improvement because it is evident that there is considerable 

gain in visual information, but the SE actually shows an improvement 

decrease.   These results add additional insight to the size and shape 

estimation procedure«   They indicate that we should, in any case, 

consider both large and amall size estimates.   Also indicated is an 

alternative size estimation procedure, which initially chooses a small 

prediction interval close to the image maximum. 

Figure 32 shows a single run attempt at restoring 4 narrow closely 

spaced sources.   The restoration does indicate two regions of enhanced 

object intensity which could be further investigated by using split 

prediction intervals, as demonstrated below. 

The sequential estimation of two split smooth pulses 

The last series showed results of estimating the outside size of 9 

sptft object by assuming various size estimates.   Here we demonstrate 

(Figures 33-37) ths use of split prediction intervals in estimating the 

inside size of a split object.   The last two fifjux .s (Figures 38 and 39) 

illustrate that we can resolve two narrow pulses which have been 

excessively diffracted. 
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In the series, Figures 33-37, on split prediction intervals, Figure 33 

establishes the inititl inside sice«   Figures 34-36 indicate further 

improvement.   Notice again how size improvement generally implies 

shape improvement*   Figure 37 shows the improvement when the true 

else is known.   These figures illustrate that, even though the objects are 

diffracted to a level twice as great as the Rayleigh level, there may be 

a possibility of not only resolving the objects but of restoring detail as 

well. 

Aa a follow up of the sequence just considered, one logically seeks 

the minimum separation between two objects which will still allow the 

two objects to be resolved.   This minimum separation was not found 

analytically as a function of noise parameters, but Figures 38.39 show 

results obtained from the restoration of two wplit sources which are 

diffracted more than 5 times the usual Rayleigh level* 

Figure 38 presents the results for a relatively high SNR case, and 

Figure 39 shows the impending cost for an increased amount of image 

noise.   Both figures clearly        v that the sources are resolved.   Based 

on these results split prediction intervals can be used to further enhance 

and restore the "bright spots." 

Before continuing it is well to reiterate that we have considered here 

a general restoration procedure which proposes to restore general objects 

in every detail.   We have assumed that very little prior information is 
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Run = 12-81 
M=24 

n  

N=24 

NA 

Quad=1 RU"7 IR=10 

NA 

1(d) = 1.64 

Ä=. 
NA 

Area =0 
NA 

Prior = 2    ilter=15 

MSF=6 -Fö NA 

Figure 33.    Restoration of the pulse cos  [100 ir   (« +'095)3   using (155) 
with x = b. 
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Figure 39.    Restoration of the f alses cos [100 IT (-y +    095)] using (155) 
with x - b. 

:---  —..        -■:■■■ 



153 

available and have been careful to point out fhoae case* when prior size 

information was used*   If the problem were to find the minimum separation 

given that two point sources made up the object we could undoubtedly do 

better, in terms of both noise and diffraction« than the results shown in 

Figures 38-39. 

Restoration using a noisy A matrix 

Results showing the effect of various amounts of A matrix uncertainty 

coupled *rith noisy image measurements are shown in Figures 40-45. 

These results are likely the most practical of any shown thus far and 

clearly indicate the possibility of using the MSE restoration procedure in 

practice. 

2 -!» All of the figures have the same image noise (<r     s 10   , SFR s 

2 -5 1.3-2.1).   Three A matrix noise levels are represented:  or      =10   , 

<r      s 10    ( and or      ■ 10* •   The first 3 figures use an initial size 
A A 

estimate of [-. 5, .5] while the last 3 use an updated size estimate of 

[-. 27, . 27].   Again we note the markcsd general improvement in shape 

when the size estimate is closer to the true size. 

The first two figures, Figures 40 and 41, have the same A matrix 

and image noise but illustrate the computational advantage of using a 

2       2-4 2-3 smaller o-     (or     a 10     in Figure 41 while r     a 10     in Figure 40) to 
XX X 

obtain a more stable initial solution, which can be iterated longer and 
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thus produce a better restoration.   Figure 42 then shows the cost of 

increased noise on the improved solution of Figure 41. 

Figures 43-44 show the same cost as Figures 41-42 when the noise 

2-5 2-4 is increased fromcr      «10     too*      a 10   , except that the size is now 

assumed to be closer to the true siae*   The improvement is noticeable 

in Figures 43-44 over Figures 41-42, 

The last figure in this series. Figure 45, illustrates the further 

cost in restoration detail when the A matrix noise is further increased 

to<r4    s 10    , A 

Image smoothing for the low SNR Case 

Now we consider the question of what happens when we encounter 

excessive image noise«   Suppose the image we ha- J at our disposal 

appears to be too noisy to improve.   We consider here a possible approach 

to tiiis problem by smoothing the original noisy image in accordance with 

prior information inherently available due to diffraction effects. 

Figure 46 presents a restoration resulting from the operation on a 
2 

very noisy image (SFR = .6-1,6),   iteration 1 is not stable for <r     = 

2« 5 x 10    .   In fact we must weight the prior noisy image so heavily in 

order to stabilize the solution that there is essentially no improvement. 

Apparently the noise level ? i so high that restoration efforts are futile. 

Of course, if additional samples of the image were available, some 

improvement may be possible. 
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On examining " • noisy image it is obvinu« that the spatial extent of 

the noise fine structure is small compared with the width of the point 

spread function.   This suggests that the noise fine structure in this case 

can be smoothed, since it could not logically be preserved by the imaging 

system,   A resulting smoothed image is shown in Figure 47.   (No 

As previously discussed in the Imaging Equation section, the transfer 

from the continuous functions to the discrete version involves some error. 

The visual effect of this error is illustrated in Figures 49-51.   The 

restoration shown in Figure 49 used unity weights, Simpson* s quadrature 

was used in Figure 50, and Gauss quadrature was used in Figure 51. 

Under the stress of both image and A matrix noise it is evident that 

the more powerful Gauss quadrature is superior.   There may be some 

question about the small values of x in Figure 49; however, it was found 
2 

that decreasing «r    , in general, has a greater scale euect tor w. = 1. 0 

than when one of the other quadratures was used.   (This scale change is 

sophistication was used in the smoothing process.) 
1  I 

Figure 48 shows the results of using a 9x9 system and operating on 

the smoothed image«   The improvement is noticeable.   These results 

illustrate that even in a low SNR situation in which the detector noioe is 

appreciable some measures can be taken which may result in restoration 

improvement. 

Quadrature effects 

_i 
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further evident if we consider the problem of numerically integrating to 

find the area under a uniform pulse of unity height while using unity 

weights*) 

The choice of quadrature and its relationship to the MSE is discussed 

later in the section entitled "MSE Variation—Choosing the A Matrix 

Parameters«" 

Comparison of the Phillips-Twomey and MSE Solutions 

If we accept the use of successive approximations, then the essential 

difference between the Phillips«Twomey solution and the MSE solution is 

just the initial prior vector used.   Figure 52 shows the asymptotic 

convergence of the SE vs. iterations for the two solutions.   (The SE is 

increasing with increasing iterations since the 5x5 system used is 

approaching the quadratrore error limited solution for > ^ 0 shoun in 

Figure 12.) 

The figure indicates that the Phillips-Twomey solution has a lower 

SE than the MSE solution for iteration 1; however, after 2 iterations the 

two solutions differ only slightly in the rate of convergence.   In fact, it 

is merely a matter of definition as to which solution reaches the asymp- 

totic SE first.   That is, iteration I for the MSE solution could have been 

defined as the zeroith solution, thus shifting the entire MSE solution curve 

1 iteration to the left. 
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.30. 

Phillips-Twomey Solution 

MSB Solution 

i 
10 

Iterations 

12 14 
—i— 

16 
T" 
18 20       22 

Figure 52.    The comparison of the MSE and Phillips-Twomey solutions. 
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Dynamic progranuning regtorationa 

Figures 53-56 illustrate the use of dynamic programming in restoring 

a uniform pulse source when R s 1.0»   The prior vector solution (Bellman, 

1965) was used for Figures 53-55.   Notice that the solution for small 

prior weighting (Figure 53) is not symmetrical and is poorly behaved as 

one progresses toward the initial estimates on the left.   This results 

I 
because the entire A matrix is not used until the last scalar estimate x. . 

M 1 

is found. 

The solutions for the problem Bellman (1965) considered appear to 

be more regular for the initial x.'s than the above results shew.   However, 

the prior vector he assumed was closer to the true solution for the initial 

estimates.   This would tend to reduce the initial irregular behavior. 

Larger values of prior weighting improve the solution, as shown in 

Figures 54 and 55, and it appears that a value of x between 1 and 10 would 

result in even greater improvement. 

Results of the area constraHt dynamic programming solution are 

depicted in Figure 56.   These results, along with results from the matrix 

inverse solution using the area constraint, indicate that the area constraint 

is less stringent in controlling the characteristic oscillatory solutions 

even when prior veighting is used. 

Based on the results obtained, it appears that the dynamic program, 

ming solutions investigated are less effective for optical restoration in 

one dimension than the MSE and Phillips-Twomey solutions. 

i 
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Run = 5 

M=ll N=ll Quad - l|Rl=2 F.-l X ; :   ), 0 Area = 2 

4*0 NA NA r-rA NA MSF=4 

I(d2) = 1. 11 

14 

13 

.12 

-11 

■10 

9 

- 8 

. 7 

- 6 

h4 

h 3 

h 2 

Iter 1. 

Image 

1. 0 

Figure 56.    Restoration usmj the dynamic programming solution (78). 
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MSE VARIATION--CHOOSING THE A MATRIX PARAMETERS 

This section considers the study of the MSE and the insight the MSE 

variation provides in enabling sound computational procedures to be 

determined«   V/e first present further discussion which defines the A 

matrix parameters for the computational scheme we wish to consider. 

Next we present and discuss the MSE variation with and without a priori 

information.   The final topic presents the procedures which have been 

developed and used in the preceding restorations for choosing the A matrix 

parameters. 

The form of the MSE we consider here is that found by letting 

2 2 K
:&
s<r

x 1 and Kn * ^a * "* Equation (152).   The resulting MSE is 

MSE «<r 2 tr ^ [ A»A + («• "fa *')I]     C (180) [[A.A.«,»-'! 

2 
When the noise variance <r     is fixed, which is usually the case since it 

is determined by the experiment, there are essentially two ways to further 

2 
minimize the MSE.   V/e can either reduce c     (assume more pseudo- 

x 

prior information) or adjust the parameters that govern the A matrix. 

Obviously one seeks the best measuring and predicting scheme which 

would entail optimal choices of M and N, the l.'s, the o.'s and the 

quadrature.   This is indeed a difficult problem.   In fact such optimal 
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choice« would appear, intuitively, to depend upon the aesumption of more 

prior object information (for example, concentrating on a certain class 

of well defined objects).   In this paper we do not consider that such 

a priori information is available.   Here we have sought to establish 

procedures for the general case«   To accomplish this we have numerically- 

studied the MGE as the various parameters were varied. 

A Matrix Parameters 

There is an uncountably infinite number of one-dimensional schemes 

we could consider.   \7e have most extensively studied thi scheme which 

uses M s N equally spaced measurement locations (fj.'s) and M = N equally 

spaced prediction points (a.'s).   The case when unity quadrature weights 

were v jed was moat extensively studied, but results have also been 

obtained for Simpson's and Gauss quadratures.   (The or.'s were spaced 

in accordance with the Gauss method when Gauss quadrature was used.) 

The ratios R and Rl were used to relate the diffraction level to the 

measuring and predicting intervals being considered.   In this case R is 

defined as the ratio of the point spread width to the prediction interval 

being considered« 

We note then that the A matrix parameters are R, Rl, M and the 

quadrature weights.   Specification of these parameters determines the 

A matrix« 

;; 

tl 
''■ » 

■1; 

3] 
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MSE vs, A Matrix P&fameters for Large A Priori Uncertainty 

Figures 57-59 show the MSE vs. R relationship for various values 

of Rl when <r     a GO. and w. = 1, 0. i s 1. •,.. M«   The MSE was normalized 
x I * 

.    2 
with respect to noise in Figures 57-58 by considering MSE/cr    *   The 

MSE in Figure 59 was normalized with respect to dimensionality as well 

.    2 
as noise by considering MSE Ar    M. 

Notice that the MSE is lowest when we measure "over" the prediction 

points (Rl = 1.0) for small values of diffraction (the cases Austin (1966) 

treated when A s I), but when R > 3.8 then Rl «2.0 is "best."   Barnes 

(1966b) was able to prove that the A matrix ia positive definite when R is 

finite and Rl = 1,0. which demonstrates that the l.'s and a.is for any 

N s M can be chosen such that the MSE is finite.   However, as the above 

results indicate, this does not preclude the choice of Rl other than unity 

to further reduce the MSE. 
i 

Another important and obvious feature can be deduced by noting the 

marked MSE increase for the curves of Figure 58 when compared with the 
i 

curves of Figure 57*   Figure 59 shows the absolute MSE increase for 

Rl a 1. 0 when M increases from 2 to 3«   This increase is most apparent 

for R > 1.0 and is attributable only ta the addition of one more row &RA 

column in the A matrix,   \7hen we extrapolate to matrices of larger 

dimension (say 24 x 24 as used several times in the simulations) the MSE 
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Figure 57.    MSE/cr     vs.  R for various values of Rl when <r     = CD,   ** - 2. 
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*   2 Jigure 58.    MSE/(r    vs. R for Rl = 1. 0 and Rl 
M - 3 and w. ^ 1. 0. n 

i 

2. 0 when a     - ao, 
x 



180 

Figure 59.    Comparison of MSE/o"     M vs.  R for Rl = 1. 0 for the 
cases when IvI = ?. and M = 3. 
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for R > I and the values of Rl shown becomes astrcnomical.   This result 

again emphc-izes the amplifying effect that excessive diffraction hza on 

the initial arbitrary noise I vel and essentially explains the reason for 

the oscillatory solutions when the A matrix dimensionality is large and 

2 
<r     is infinite.   The next figures we present, which are explained below, 

illustrate how finite or     alleviates this effect, 
x 

MSE vs. A Matrix Paraoicers for Finite / Priori Information 

Figure 60 illustrates the MSE behavior for various parameters as 

the prior information is varied.   The general behavior agrees with 

intuition since as prior information increases ftr     decreases) we infer 

the possession of more knowledge about the object and the MSE decreases 

accordingly. 

Figure 61 shows the measuring and predicting intervals for the top 

four curves shown in Figure 60.   After viewing Figure 61 refer agaiu to 

Figure 60.   Now consider the asymptotic MSE for the top four curves. 

These top four curves show the advantage of choosing a measuring interval 

which is wider than the prediction interval (Rl is large) since the MSE 

7 
decreasee by at least a factor of 10   while the diffraction level, weights, 

and M remain fixed.   The bottom two curves show a similar reduction for 

a smaller diffraction level« 
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sine    (u) 

ML 
TTT •1.0 -.5 

T" 
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PI 

Rl = l. 0 

-MI   — 

-1. 0 -PI 

Rl=2. 0 
.5 1.0 

MI 
TT 

Rl = 5. 0 

—r 
. 5 •1.0 1.0 

Figure 61.    Measuring and predicting intervals superimposed with 
the point spread function for the top four curves in Figure 60,    The 
symbols MI and PI represent,   respectively,  the measuring and 
predicting intervals. 
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Figure 60 «xhibita results for the hi. a 5 case.   Figure 62 presents 

curves, in the sarce manner as Figure 60, for the simulated results shown 

in the previous section«   From Figure 62 it is evident that the prior 

weighting necessary to produce the simulations was great enough so that 

we are operating in the region where the curves blend together, as shown 

its Figure 60.   In this region choosing Rl large still has an effect on the 

hlSE, but it is not nearly as pronounced as for the asymptotic region of 

the curves.   However, the computational error involved in the matrix 

inversion process was noticeably reduced by choosing Rl large. 

Choosing the A Matrix Parameters 

Now that we have presented curves showing the general behavior of 

the MSE with the A matrix parameters we discuss the guidelines for 

choosing these parameters.   These choices depend not only upon the IviSE 

but upon other errors, the most prominent being the quadrature error, 

the computational error, and the error caused by assuming tr     too small. 

In choosing these parameters it is evident that we must make these choices 

regardless of the diffraction and noise.   Thus, although we seek to improve 

the distorted object in the presence of these effects, the diffraction and 

noise must be regarded a« fixed quantities when making these choices. 
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10 10" 2.   2 
n     x 
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Figure 62.    Curves of MSE/cr 2 vs.   the ratio ff 2Ar   ,   showing the 
,..,,.,, n. nx 0 

region used in the simulated restorations. 



186 

Chooaing the quadrature 

Tie determination of which quadrature is "best" or better than 

another is a difficult problem. One cannot accurately estimate the 

quadrature error without knowledge of the integrand, which for the 

restoration problem we have considered is unknown. 

Before discussing the quadrature choice we briefly review the 

quadratures we have considered.   For a more comprehensive treatment 

the reader is referred to Kopal (1961), Krylov (1962) or the more tutorial 

McCracken and Dorn (1964)« 

The Gauss quadrature method is a very powerful tool to use in 

numerical integration.   Here we refer to power as describing the number 

of points necessary in the approximating summation to provide a specified 

accuracy.   To illustrate just how powerful the Gauss method is, consider 

that a polynomial of degree m approximates the integrand to a specified 

accuracy.   Now suppose we use the Gauss system with a summation limit 

of M points.   The Gauss system is sufficiently powerful that when 

m s 2M-1 the integration is performed exactly with no error.   For example, 

suppose we decide that the integrand is sufficiently approximated by a 

polynomial of degree 49.   This means that only 25 points are required to 

perform the integration exactly.   Simpson's summation, on the other hand, 

is only capable of integrating 3     degree integrands exactly.   Herein lies 

the major advantage of Gauss quadrature over Simpson's quadrature (and, 

as the above references point out, over essentially all other quadrature ;). 
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The only disadvantage of Gauss quadrature in comparison with other 

quadratures is one of complexity.   The complexity is due to the use of 

unequally spaced integrand arguments.   This disadvantage is not very 

significant in the optics problem because we can predict the object for 

unequally spaced points just as well as equally spaced points.   The only 

possible drawback would be the specification of the point spread function 

at these points»   If the pcbit spread function is analytically approximated, 

this would not be a problem«   For the case when the point spread function 

is measured some extra care may be necessary to ensure that the point 

spread function is accurately specified for all ranges of its argument. 

Now that we have briefly reviewed the quadratures considered we 

continue on with the discussion of quadrature choice. 

Recall that the total error is comprised of both MSE and quadrature- 

error.   These two errors are both related to the system dimensionality. 

We have seen that increased dimensionality implies increased MSE, but 

it is well known that increased dimensionality reduces quadrature-error. 

Thus, it is logical to assume that a choice of quadrature should involve 

the trade-off between MSE and quadrature-error.   The following results 
I 

i 

illustrate this trade-off. I 

2 
Refer again to Figures 49, 50, and 51«   The MSEAr     for the Gauss 

2 2 I 
case is 1.43 x 10 , for the Simpson's case 1. 26 x 10 , and for unity 

2 
weight« 1.23 x 10 .   The fact that the Gauss quadrature resulted in a i 

■%■ 

..^.-—^-^Ir^.^ r,---:^...-^S 



188 
2 

greater MS£/<r     is easily explained.   In ali three cases the actual number 

of point« used wa« equal, but the effective dimemtonality of the Gaues 

system is much greater than either of the other quadratures.   Similarly, 

the effective dimensionality in the Simpson'B case is greater than the unity 

weights case.   Visually (which is a good measure of total error) the Gauss 

system produces a better restoration«   Since the MSE actually increased, 

but only f        iy, the discrepancy between visual error and MSE can . 

logically be attributed to a reduction in quadrature error.   In fact, it 

appears that the reduction in quadrature error more than compensates 

for the slight increase in MSE.   Thus, in this case one would choose 

Gauss quadrature.   Furthermore, we can infer from Figures 60 and 62 and 

other numerical evidence that as long as one uses sufficient a priori 

information to be in the region where the curves blend together, use of 

the Gauss quadrature will consistently more than compensate for the slight 

increase in MSE.   And in this region it is recommended that Gauss 

quadrature be used. 

On the other hand, as r     approaches infinity the increased effective 
x 

dimensionality for the more powerful quadratures may increase the MSE 

above the compensating reduction in quadrature error.   For this region 

of small a priori information we could either reduce the Gauss system 

dimensionality or perhaps successfully use a less powerful quadrature. 
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Choosing tag ratio of the measuring and predicting intervtJs (Rl| 

The iilfraction range considered in this paper is R ^ 1,0.   For 

R < 1,0, the image becomes a much better prior guess for the object, 

and we can heavily weight the image in the restoration procedure. 

Consider the images for the Range R > 1. 0.   For the noise levels 

considered in this paper the image width (noise to noise) is, grossly 

speaking, the width of the point spread function.   Thus, the prediction 

a id measuring intervals will be "under" the main lobe of the point spread 

function.   When this is the case, as hao been demonstrated in Figures 57, 

58, and 60, it is profitable to choose Rl larger than unity so that the 

measuring interval is wider than the prediction interval.   The following 

discussion illustrates what is happening to the A matrix elements as Rl 

changes and then presents a guide for choosing an upper bound for Rl. 

Refer again to Figures 57 and 58.   The tendency for A to approach a 

singular condition for Rl a 1.0 and increasing R is clearly shown.   As 

one studies the A matrix elements for the values of R > 1. 0 and Rl » 1.0, 

it is seen that they become more and more alike.   On the other hand, 

choosing Rl > 1,0 for values of R > 1.0 tends to make the A matrix elements 

differ, and ge nerally speaking, if Rl is not made too large, the MSE will 

deczeaser   The choice of an upper bound for Rl involves a trade-off 

between two factoz 3. 
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The first it seen in Figure 57.   For matrices of sma4 dimension 

it is evident that the A matrix will be singular for certain choices of Rl 

even when R > 1.0«   However, it is evident intuitively that if the dimension- 

ality is large enough (3x3 or greater) and Rl is chosen only large enough 

so that the measuring and predicting intervals both lie within the point 

spread function width, then the A matrix will not be singular.   An analytic 

proof of this statement is not given, but the available numerical evidence 

shows that A is nonsinguTar for this choice of Rl. 
2 

The second limitation on large Rl is imposed by system noise (er^ ). 

For R > 1.0 it is evident that as Rl increases above unity then the image 

is being measured where the SNR Is decreasing.   Thus, if the system noise 

is great enough a choice uf Rl extended to the limit described above may 

be suboptimunu 

Under these conditions the following guide for choosing Rl is stated. 

For matrices of dimensionality 3x3 or greater and R > 1.0 choose Al as 

Urge as possible, while ensuring that the measuring interval is "under" 

the point spread function and small enough that the measurements are not 

excessively noisy.   This notion is clearly a compromise between system 

noise fe-    ) or SNR and the location of *he measurements such that the 
n ' 

matrix (A*A + <r    /er    I) is non-singular enough to be successfully 

inverted« 

jEy,—-v-. =LZ=^:== 
at&mmrMtiJ aarswäiiftiC« &&& --r^,-.^- 
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Chooeing A tnatyfac dimensionality 

Throughout the paper we have assumed that the A matrix is of 

dimensionality NxM and that M < N.   Wh n M < N we have the over- 

determined case in vrtdch we measure the image more often than the 

number of unknowns we have tc predict»   In some problems it is 

advantageous, for statistical reasons, to choose M < N and use the over- 

determined solution«   This case was considered in the simulation presented 

in Figure 46.   Recall that the image was excessively noisy (SFR = .6-1.6). 

In an effort to restore the object several A matrices with M < N were used. 

The dimensionality shown in Figure 46 was 50x11.   However, in all of the 

cases when M < N no appreciable improvement was apparent.   Based on 

this evidence, it appears that choosing M < N is of no particular advantage 

in the restoration problem.   When M = N, then the choice of how large 

to make N or M is to be considered.   This choice is discussed as follows. 

As previously stated, the MSE is proportional to N, and the quadrature 

error is inversely proportional to N.   Thus, N should be chosen by 

studying the trade-off between MSE and quadrature error.   For the one- 

dimensional restorations considered, or     was assumed small enough so 

that reasonably large matrices could be successfully u^ed.   The largest 

matrix used was a 65x65, and it resulted in restoration improvement. 

For the one-dimensional objects considered, it appeared that the 48x48 

Gauss system was adequate for reducing quadrature error. 
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To obtain the same quadrature error for two dimensional objects, the 

A matrix dimensionality will increase roughly as N   compared to N.   Thus, 

for two dimensional objects we will have to consider more closely the 

trade-off between MSF and quadrature error. 

2 
Choosing <r     and the number of iterationa 

2 
The choice of cr     involves the compromise between MSB and the 

error involved by assuming too much prior information.   One desires to 
2 

choose (r     small enough to enable stable computational results to be 

obtained and yet large enough to reduce the smoothing effect or a priori 

image weighting. 

2 
The simulated results have indicated that er     may be sequentially 

2 
determined by visually judging restorations for several values o*       . 

It has also been demonstrated that one can circumvent the need ■. 
2 continually invert matrices for each «r     in order to vary prior information. 

Prior information can be easily varied by using successive approximations. 

Considering that the other parameters are fixed, a good procedure to 

2 
use is to vary <r     until the solution appears (visually) to be stable and 

then iterate until computational error limits the restoration. 
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SUMMARY AND CONCLUSIONS 

SycopeU of the Paper 

In this section a brief synopsis of the entire paper is presented and. 

the important results are stated. 

The basic problem considered is one of restoring an optical object 

which has been diffracted and corrupted by noise«   Previous work has 

shown that if the object is of finite extent then the restoration process 

is limited by noise and not diffraction.   After reviewing previous 

approaches to the proble;nt it was evident that improvement could be 

made by providing for noise in the restoration procedure. 

In order to present some insight into the diffraction process the 

imaging equation was derived«   The form of this equation indicates that 

a linear transformation of the object constitutes the basic image-object 

relationship and that diffraction implies the obscuration of object detail. 

Since numerical techniques were to be u'-ed, the discrete version of the 

imaging equation was presented and the quadrature error was introduced. 

Next the straightforward no-noise matrix inverse solution to the problem 

was presented«   Two major difficulties in using this solution are that 

excessive image accura^ / may actually be necessary to effect the 

solution and that for the diffraction range of interest (R > 1.0) the A 

matrix is nearly singular and is difficult to invert* 
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The next section presented previous noiseless work by Phillips (1962), 

Twomey (1963) and Bellman, et «a. (I964r 1965).   Their work demonstrated 

that a priori information in the form of a constraint could be successfully 

used to alleviate the difficulties just mentioned* 

In order to introduce and discuss the uncertainty caused by noise, 

analytical results for a detection example and for the error variance 

obtained in estimating the separation between two point sources were 

presented.   Here the basic trade-off between diffraction and noise in 

regaining obscured object information was presented and discussed in 

detail«   The basic trade-off is that diffracticn essentially amplifies the 

prevailing noise level, and in order to regain object information for 

excessive diffraction the SNR, must be increased. 

Turning again to the restoration problem, object estimation in the 

presence of additive and detector noise was discussed.   Both the Baysean 

and MSE approaches in the estimation of the object were considered.   In 

using the Bayes1 approach it was necessary, because of mathematical 

tractability, to use the suboptimum scheme of operating on an image 

estimate to perform the restoration.   The Baysean approach did provide 

insight as to how a priori information enters into the solution, but the 

suboptimal scheme did not indicate the use o£ a priori information in the 

inverse operator.   On the other hand, the MSE approach did indicate 

how a priori information can be used in the inverse operator and 
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furthermore indicated that the smoothing process in the noiseless case 

treated by Phillips (1962) is actually a trade-off between the noise level 

and a priori information.   Also discussed in the Object Estimation section 

was the assumption of high SNR*   Using this assumption tine Baysean 

estimates for Gaussian statistics are equivalent to the MSE estimate* 

In the next section simulated object restorations were presented. 

Here various parameters were defined which indicated how well the 

restoration process performed for various objects and for various 

diffraction and noise levels.   These results demonstrated that object 

restoration is possible.   The amount of restoration improvement is 

dependent upon both diffraction and noise.   A specific statement is that, 

generally speaking, improvement is possible for the diffraction range 

1.0 < R < 10 when the sample mean noise level is as high as 1 to 3 

percent of the image maximum. 

Next, numerical results on the variation of the MSE were presented 
2 

and discussed«   For fixed «r     and diffraction in general the only recourse 

to further reduce the MSE is to consider varying the A matrix parameters 

or the a priori variance <r    .   The following guidelines were evident from 
mm 

the results presented in this section.   The quadrature used most profitably 

was the Gaussian system«   For the diffraction range considered the 

measuring interval should be chos_,. .. ner equal to or greater than the 

predicting interval«   The upper limit of the measuring interval width 
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•hould be chosen such that it does not exceed the point spread function 

width or include excessively noisy image measurements«   It is advisable 

to use M « N.   The choice of an upper Lmit en N involves the trade-off 

between the error caused by excessive weighting of the a priori image 

2 
and the improvement in quadrature error.   The a priori variance <r 

should be chosen small enough to obtain an initial stable solution which 

can be successively iterated until comp   ational accuracy limits the 

restoration.   These results when applied to fee MSE estimate and coupled 

with the sequential size estimation procedure discussed previously 

constitute the basic computatic . I scheme dev<^xoped ". his paper. 

Futur» Research 

The outstanding applied research need is to actually perform a 

restoration experiment which uses the procedures developed in the paper. 

Such an experiment would provide information on the more real noise 

levels encountered in practice and should lead to the intelligent use of 

repeated samples of the noisy image and A matrix. 

The general theoretical or analytical solution to the problem remains 

to be obtained«   To solve this problem it appears that we need to specify 

eigenfunctions and eigenvalues for a general inverse imaging kernel, as 

discussed by Barnes (1966a).   This is indeed a difficult problem, but 

certainly object restoration will not be complete until this information U 

available. 

i 1 

1   i 

1   I 
I   I 
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;./__.... _V.V-..-..L _,.._..■._. ^_ 



197 

Throughout the simulated results we have considered that the noise is 

white and Gaussian.   Band limited noise should also be considered.   When 

bandlimited noise is considered, perhaps the diffraction effects will not 

be as severe as those shown in this paper.   However, it should be 

mentioned that the computational error is not bandlimited. 

i—zv---: -i--: ---:.. ■:■■- ■ ■-.-.-■ ■■ T:- -.--—.■:::- -~~~z-^:-i~~-:~~-. =-- 
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APPENDIX 

Two«Dlm«n8ional Gauae Quadrature 

Lü two dimensions the imaging equation is 

b   b 2   1 

»U, "'■/Z MI-of,n-P)x(*,P)da# (189) 

a2al 

The two-dimensional Gauss quadrature .for (189) can be written 

Os-SKb.-a.)   N N 

m«i nel m a        a       m       n   m 
(190) 

where 

''n"*<bl-,'l>+ifbl-,llhrn 

Pm"iC2-a2'+*«bZ-*Z>''m 

end the quantities y . y   , H_ and H   are defined from tables of n     m      m n 

coefficients for a given N (Krylov, 1962). 



We can bring ihe constant <VWi> 
199 

inside the summation oi 

(190) and define a new summation index J as follows: 

j « 1     when m & 1, n a 1 

Thus 

or 

j s N    when m s N# n B 1 

'    2 
j s N     when m = N, n s N 

N 
b(£ ,tj ) » S w h(e -«    ti •# )«(«   P ) 
i*jsl3ijij        3    J 

b. « S a. x 

If we consider L image measurements then the final form is 

bsAx U91) 

where the A matrix has L rows and N   columns» N2 

Recurrence Relation für Area Constraint 

Here we derive the recurrence relationship (73) which is 
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^(b. c) . min [f^Cb-*^^. cw^^]. (192) 

\7e define 

M 2     N M 

• • 

According to the ontizneiity principle (stepwise optimisation principl 3) we 

can write, 

M 2     N    M 2 
£   (b. c) - min[i«ln X( S w x-c)' + S ( S a x -b/] ('94) 

^    ^-l i»l i=l j«l    3 J 

a 
Xl 

tana, theze e^dat arguments arg   and <«rg   such that the term in brackets 

can be written 

fM-l(argl' Ärg2) 

fM-l 2     N  M-l 2^ 
US wx^arg )   +S(S ».^.-(arg ) )  f(195) 

isl  * Ä       isl j=l ^ J * l J 

xl 
Now we have to £ nd transformations arg   and arg. which enable (195) 

to equal the term in brackets in (194),   Thus we equate 

M 2      M-l 2 
(S w.x.-c)    » (S w.x.-arg_) (196) 
ial   1 l i=l   * *       z 

A,--   -.-.r^^'-Lr- 
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N   M N M-l 
S (E a x -b )   « S (S a..x.-(axgf).) (197) 

From (196) 

**h * C-WMICM 

If we fix I in (197) we obtain 

(190) 

"«1 s b-3eMa, (M) (199) 

.& Where at(M) s ^IM* a2M aNM^ ^^ ^ ,ile tl!,aMPOB« <rf the M 

column in Ibe A matrix.   Using (198) and (199) we can write the recurrence 

relation (192). 

Computer Programming 

The computational results of this paper were obtained using the IBM 

1620 and IBM 7094 digital computers.   The 1620 was available at Utah 

State University.   The 7094 was available through the Western Data 

Processing Center at UCLA, in Los Angeles, California. 

?■« 
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Two facets of computer programming should be mentioned.   First, 

considerable efforf «ros made to ensure the correct estimation of image 

accuracy,   (This effort is discussed under Image and A Matrix Accuracy 

in the Simulated Object Restorations section«) A similar effort was 

made to ensure that the solutions were correct«   A good check of these 

solutions was available by comparing the last solution vector component 

Xj. in both the matrix inversion solutions and the corresponding dynamic 

programming solutions.   Second, as a further check on the solution 

accuracy and to study the inversion process, the matrix inverse was 

checked for each solution*   la all of the cases shown when <r     was 
x 

finite, <r     was assumed small enough t> - that no special programming 

sophistication was required to ensure a correct matrix inverse«   When 

<r     was infinite or very large, results were obtained on the 1620 which 

allowed the use of exc isive accuracy (19 to 28 significant digits).   This 

excessive accuracy enabled results to be obtained, as previously presented, 

when the A matrix was nearly singular. 

As an example of the computer programming necessary to simulate 

the restoration of optical objects, we present the following computer 
a 

program which represents roughly 50 percent of the computational effort. 

This computer program was used to simulate the matrix solutions in the 

restoration problem for the sources composed of cosine pulses from 

I    . * cos [kir(ar-<p)] as shown in (166) and (168).   The random number subroutine 

i        • 
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was obtained from the Western Data Processing Center in Los Angeles, 

The symbols used and the computational seques e are indicated sts the 

prog/'am proceeds. 

ffirtmwwi rüBw*Büitfjy ■■-, rip 
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